27 research outputs found

    Synthesis and characterization of a novel Fe3O4-SiO2@Gold core-shell biocompatible magnetic nanoparticles for biological and medical applications

    Get PDF
    Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/Âż-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neutrons Capture Therapy (BNCT) highlighted. The main problem dealing with cancer cells is that the tumor and normal cells ones are mixed without a map of the boron accumulation. Methods: Areas specifically discussed in this report include the possibility of a FSG mediated by liposome as the boron carriers for the transfer of boron compound to tumor tissue. Furthermore, folate receptor was considered as an appropriate substrate that has great potential to attach to tumor on the surface of cancer cells. The present work aimed to study boron biodistribution in the muscle cancer animal model in Bagg Albino (BALB/c) mice employing PEGylated liposome-encapsulated FSG formulations. Results: The predetermined boron concentration was obtained to be 20-35 mg 10B/g. Samples of the tumor tissue, such as kidney, liver, lung, heart, skin, spleen, brain, stomach, and bone were taken as post-administration at different times to measure boron content by Inductively Coupled Plasma (ICP) analysis. The results showed the existence of GLUT-5 expression as an erythrocyte-type glucose transporter protein in a wide variety of tumor cells. Conclusions: Fe3O4-SiO2 nanoparticles are highly biocompatible with biological materials and gold shell also imparts the magnetic nanoparticles with many intriguing functional propertiesPeer ReviewedPostprint (published version

    Response surface methodology based on central composite design for simultaneous adsorption of rare earth elements using nanoporous calcium alginate/carboxymethyl chitosan microbiocomposite powder containing Ni0.2Zn0.2Fe2.6O4 magnetic nanoparticles: Batch and column studies

    Get PDF
    In this research paper, the utilization of the magnetic calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 (CA/CMC/Ni0.2Zn0.2Fe2.6O4) was investigated for the simultaneous aqueous adsorption of Nd (III), Tb (III), and Dy (III). The magnetic products were characterized by FE-SEM, EDX, XRD, FT-IR, TGA, and VSM techniques. The saturation magnetization value for Ni0.2Zn0.2Fe2.6O4 and CA/CMC/Ni0.2Zn0.2Fe2.6O4 was found to be 45.87 and 14.14 emu/g, respectively. Using RSM, a quadratic polynomial equation was obtained to predict the adsorption efficiency of each ion. Under the conditions of pH = 5.5, adsorbent dosage of 0.1 g, initial concentration of 30 mg/L, and contact time of 53 min predicted by RSM, the adsorption efficiencies of Nd (III), Tb (III), and Dy (III) were respectively 95.72, 96.17, and 99.44%. The isotherm and kinetic data were respectively fitted well with Freundlich and pseudo-second-order (PSO) models. The desorption of the loaded ions was effectively carried out by 0.2 M HNO3, and the adsorbent was consecutively utilized with 2.54, 1.63, and 1.16% decrease in adsorption efficiency for Nd (III), Tb (III), and Dy (III), respectively, after the forth cycle. Additionally, the adsorption behavior of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 towards Nd (III), Tb (III), and Dy (III) was studied by using a fixed-bed column technique.This work has been supported by the Spanish Ministry of Economy and Competitiveness (Ref. CTM2017-83581-R). Hamedreza Javadian acknowledges the financial support received (Ref. BES-2015-072506).Peer ReviewedPreprin

    Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies

    Get PDF
    AbstractA specific type of zeolite, synthesized from coal fly ash, was used in our batch adsorption experiments in order to adsorb Cd (II) ions from aqueous solution. Solid-state conversion of fly ash to an amorphous aluminosilicate adsorbent (geopolymer) was investigated under specific conditions. The adsorbent ZFA was characterized using XRD, XRF, FT-IR, FE-SEM, LPS and BET surface area. The optimum conditions of sorption were found to be: a ZFA dose of 0.08g in 25mL of Cd (II) with contact time of 7h and pH 5. Four equations, namely Morris–Weber, Lagergren, Pseudo-second order and Elovich have been used in order to determine the kinetics of removal process. The collected kinetic data showed that pseudo-second order equations controlled the adsorption process. According to adsorption isotherm studies, the Langmuir isotherm was proved to be the best fit for our experimental data, in comparison to Freundlich, D–R and Tempkin models. The thermodynamic parameters ΔH, ΔS and ΔG are evaluated. Thermodynamic parameters showed that the adsorption of Cd (II) onto ZFA was feasible, spontaneous and endothermic under studied conditions. To conduct desorption experiments, several solvents (including alkaline, bases and water) have been employed. 84% of desorption efficiency was achieved using NaOH

    Using fuzzy inference system to predict Pb (II) removal from aqueous solutions by magnetic Fe3O4/H2SO4-activated Myrtus Communis leaves carbon nanocomposite

    Get PDF
    In this research study, a magnetic nanocomposite consisting of the Fe3O4 nanoparticles immobilized on Myrtus Communis-derived activated carbon (MM-AC) was synthesized and then, characterized by FE-SEM and FT-IR analytical methods. The results showed that the sizes of the Fe3O4 nanoparticles were about 54¿nm, and the changes in the intensities of the major peaks were associated with the binding process. The adsorption efficiency of the MM-AC was evaluated for Pb (II) removal from aqueous solutions. The effective parameters such as pH, adsorbent dosage, contact time and initial metal ion concentration were optimized to reach maximum Pb (II) removal efficiency (%). The equilibrium amount of Pb (II) adsorbed onto the MM-AC suggested that the removal of Pb (II) followed Langmuir model. The kinetic studies on the removal of Pb (II) revealed that the adsorption process obeyed pseudo-second-order kinetic model. The maximum Pb (II) removal efficiency by the MM-AC was obtained at pH¿=¿5. The adsorption capacity of Pb (II) onto the MM-AC changed from 88.65 to 480.90¿mg/g by increasing the initial concentration of Pb (II) in the range of 100–400¿mg/L. The comparison of maximum monolayer adsorption capacity of the MM-AC with other adsorbents reported in the literatures for removal of Pb (II) indicated that the MM-AC had better removal efficiency. In order to predict Pb (II) removal efficiency, a methodology based on fuzzy inference system (FIS) including multiple inputs and one output was developed. Four input variables namely pH, contact time (min), adsorbent dosage (g), and initial concentration of Pb (II) were fuzzified using an artificial intelligence-based approach. A Mamdani-type of fuzzy inference system was applied to implement a total of 18 rules in IF-THEN format along with a fuzzy subset consisting of a combination of Triangular and Trapezoidal membership functions in eight levels. The max-min method was employed as fuzzy inference operator, while defuzzification process was conducted using the center of gravity (COG, centroid) method. The achieved coefficient of determination value (R2>¿0.99) confirmed the excellent accuracy of fuzzy logic model as a trustworthy prediction tool for Pb (II) removal efficiency. The overall results suggested that the developed material can be employed as an efficient adsorbent for Pb (II) removal from polluted aqueous solutions on a full-scale operation.Peer ReviewedPostprint (author's final draft

    Fuzzy logic modeling of Pb (II) sorption onto mesoporous NiO/ZnCl2-Rosa Canina-L seeds activated carbon nanocomposite prepared by ultrasound-assisted co-precipitation technique

    Get PDF
    In this study, NiO/Rosa Canina-L seeds activated carbon nanocomposite (NiO/ACNC) was prepared by adding dropwise NaOH solution (2 mol/L) to raise the suspension pH to around 9 at room temperature under ultrasonic irradiation (200 W) as an efficient method and characterized by FE-SEM, FTIR and N2 adsorption-desorption isotherm. The effect of different parameters such as contact time (0–120 min), initial metal ion concentration (25–200 mg/L), temperature (298, 318 and 333 K), amount of adsorbent (0.002–0.007 g) and the solution's initial pH (1–7) on the adsorption of Pb (II) was investigated in batch-scale experiments. The equilibrium data were well fitted by Langmuir model type 1 (R2 > 0.99). The maximum monolayer adsorption capacity (qm) of NiO/ACNC was 1428.57 mg/L. Thermodynamic parameters (¿G°, ¿H° and ¿S°) were also calculated. The results showed that the adsorption of Pb (II) onto NiO/ACNC was feasible, spontaneous and exothermic under studied conditions. In addition, a fuzzy-logic-based model including multiple inputs and one output was developed to predict the removal efficiency of Pb (II) from aqueous solution. Four input variables including pH, contact time (min), dosage (g) and initial concentration of Pb (II) were fuzzified using an artificial intelligence-based approach. The fuzzy subsets consisted of triangular membership functions with eight levels and a total of 26 rules in the IF-THEN approach which was implemented on a Mamdani-type of fuzzy inference system. Fuzzy data exhibited small deviation with satisfactory coefficient of determination (R2 > 0.98) that clearly proved very good performance of fuzzy-logic-based model in prediction of removal efficiency of Pb (II). It was confirmed that NiO/ACNC had a great potential as a novel adsorbent to remove Pb (II) from aqueous solution.Postprint (author's final draft

    Synthesis of hydrous iron oxide/aluminum hydroxide composite loaded on coal fly ash as an effective mesoporous and low-cost sorbent for Cr(VI) sorption: Fuzzy logic modeling

    Get PDF
    The aim of this research was to estimate the possibility of using synthesized hydrous iron oxide/aluminium hydroxide composite loaded on coal fly ash (FA3) as an efficient sorbent for Cr(VI) sorption from aqueous solution. In this regard, dissolution and precipitation processes were performed to rearrange and load the intrinsic iron and aluminum on the surface of fly ash. Different characterization techniques including XRD, XRF, FT-IR, SEM, LPS and BET surface area were applied to analyze the sorbent properties. Moreover, sorption kinetics were studied using Morris–Weber intra-particle diffusion, Lagergren pseudo-first-order and pseudo-second-order models. The kinetic analyses indicated that pseudo-first-order model controlled the sorption process. In order to estimate the sorbent capacity, Langmuir, Freundlich and D–R models were applied. The thermodynamic parameters of Cr(VI) sorption were also studied. In addition, removal efficiency of Cr(VI) was predicted using the developed fuzzy logic model. The fuzzification of four input variables including pH, contact time, adsorbent dose and initial Cr(VI) concentration versus removal efficiency as output was carried out using an artificial intelligence-based approach. A Mamdani-type fuzzy interface system was employed to fulfill a collection of 24 rules (If-Then format) using triangle membership functions (MFS) with seven levels in fuzzy sets. The proposed fuzzy logic model demonstrated high predictive performance with correlation coefficient (R2) of 0.95 and acceptable deviation from the experimental data, confirming its suitability to predict Cr(VI) removal efficiency. Based on experimental data and statistical analysis, the synthetized sorbent was effective for treating wastewater containing Cr(VI).Peer ReviewedPostprint (published version

    A Novel N-Doped Nanoporous Bio-Graphene Synthesized from Pistacia lentiscus Gum and Its Nanocomposite with WO3 Nanoparticles: Visible-Light-Driven Photocatalytic Activity

    No full text
    This paper reports the synthesis of a new nitrogen-doped porous bio-graphene (NPBG) with a specific biomorphic structure, using Pistacia lentiscus as a natural carbon source containing nitrogen that also acts as a bio-template. The obtained NPBG demonstrated the unique feature of doped nitrogen with a 3D nanoporous structure. Next, a WO3/N-doped porous bio-graphene nanocomposite (WO3/NPBG-NC) was synthesized, and the products were characterized using XPS, SEM, TEM, FT-IR, EDX, XRD, and Raman analyses. The presence of nitrogen doped in the structure of the bio-graphene (BG) was confirmed to be pyridinic-N and pyrrolic-N with N1 peaks at 398.3 eV and 400.5 eV, respectively. The photocatalytic degradation of the anionic azo dyes and drugs was investigated, and the results indicated that the obtained NPBG with a high surface area (151.98 m2/g), unique electronic properties, and modified surface improved the adsorption and photocatalytic properties in combination with WO3 nanoparticles (WO3-NPs) as an effective visible-light-driven photocatalyst. The synthesized WO3/NPBG-NC with a surface area of 226.92 m2/g displayed lower bandgap and higher electron transfer compared with blank WO3-NPs, leading to an increase in the photocatalytic performance through the enhancement of the separation of charge and a reduction in the recombination rate. At the optimum conditions of 0.015 g of the nanocomposite, a contact time of 15 min, and 100 mg/L of dyes, the removal percentages were 100%, 99.8%, and 98% for methyl red (MR), Congo red (CR), and methyl orange (MO), respectively. In the case of the drugs, 99% and 87% of tetracycline and acetaminophen, respectively, at a concentration of 10 mg/L, were removed after 20 min

    Ca-alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite: Synthesis, characterization and application for single adsorption of Nd+3, Tb+3, and Dy+3 rare earth elements from aqueous media

    No full text
    This study aims to research the adsorption of Nd+3, Tb+3, and Dy+3 from aqueous media onto the magnetic calcium alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 (CA/CMC/Ni0.2Zn0.2Fe2.6O4) bionanocomposite in a single system. FE-SEM, FT-IR, EDX, VSM, and TGA were applied to characterize the product. The VSM result showed the saturation magnetization values of 45.87 and 14.14 emu/g for the bare Ni0.2Zn0.2Fe2.6O4 nanoparticles and CA/CMC/Ni0.2Zn0.2Fe2.6O4, respectively. The adsorption results showed that at optimum conditions of contact time of 40 min, pH of 5.5, and 0.8 g/L, the adsorption efficiency of the adsorbent for Nd+3, Tb+3, and Dy+3 was 97.75, 96.83, and 97.85%, respectively. The ions adsorption kinetic onto the CA/CMC/Ni0.2Zn0.2Fe2.6O4 was in accordance with pseudo-second-order (PSO) model. The evaluation of equilibrium data was performed by the isotherm models of Langmuir and Freundlich. Fitting the experimental data of Tb+3 and Dy+3 was done better with Freunlich model than Langmuir model, while fitting tests for Nd+3 adsorption data showed better coverage using Langmuir model with a maximum adsorption capacity of 73.37 mg/g. The results of the parameters of thermodynamic showed the endothermic and spontaneous properties of the process. Additionally, the efficacy of the adsorbent was studied using 0.2 M HNO3 in four adsorptions–desorption cycles. Overall, the obtained results demonstrated that the environmentally friendly magnetic bionanocomposite adsorbent can be applied effectively for Nd+3, Tb+3, and Dy+3 adsorption with favorable adsorption efficiency.Peer ReviewedPreprin

    Novel magnetic nanocomposite of calcium alginate carrying poly(pyrimidine-thiophene-amide) as a novel green synthesized polyamide for adsorption study of neodymium, terbium, and dysprosium rare-earth ions

    No full text
    In this paper, a novel polyamide containing pyrimidine and methine thiophene linkages (poly(pyrimidine-thiophene-amide) (P(P-T-A))) was synthesized. Then, the magnetic calcium alginate nanocomposite containing P(P-T-A) (CA-P(P-T-A)-Ni0.2Zn0.2Fe2.6O4 (NZFO)) was synthesized for studying neodymium (Nd+3), terbium (Tb+3), and dysprosium (Dy+3) ions adsorption in the single ion solutions. The obtained results of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray (EDX), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Fourier transform infrared (FT-IR) indicated the successful synthesis of the materials. The value of saturation magnetization of the nanocomposite was reported to be 15.28 emu/g, indicating an appropriate magnetic response. Under the optimum conditions, adsorption efficiency for Nd+3, Tb+3, and Dy+3 was 96.73, 94.82, and 97.58 %, respectively. According to the experimental results, it can be stated that the data of REEs adsorption were efficiently fitted by nonlinear pseudo-second-order kinetic model. Adsorption isotherms were also evaluated by fitting with Freundlich and Langmuir isotherm models. A better fit was achieved by Freundlich model in the case of Tb+3 and Dy+3 ions, while Langmuir isotherm fitting reported a better result for Nd+3 adsorption data. Moreover, the changes in Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) values presented a feasible and endothermic ions adsorption process onto the nanocomposite that occurred spontaneously under the investigated conditions. The obtained results indicated that the nanocomposite can be considered as a potential adsorbent for the efficient adsorption of the investigated ions.This work has been supported by the Spanish Ministry of Economy and Competitiveness (Ref. CTM2017-83581-R). Hamedreza Javadian acknowledges the financial support received (Ref. BES-2015-072506).Peer ReviewedPreprin

    Fabrication of Poly (Acrylonitrile-Co-Methyl Methacrylate) Nanofibers Containing Boron via Electrospinning Method: A Study on Size Distribution, Thermal, Crystalline, and Mechanical Strength Properties

    No full text
    Electrospun polymeric nanofibers have attracted great attention in filtration systems and protective clothes. One of them is polyacrylonitrile (PAN) nanofibers, which are a suitable choice for the fabrication of protective clothes in the defense industry, due to their good fiber formation and easy optimization with chemical reagents. They do not possess adequate properties for protection against chemical, biological, and radiological agents. In this research, poly (acrylonitrile-co-methyl methacrylate) (PANMM) nanofibers and PANMM nanofibers containing 10B were fabricated via the electrospinning method. The study of the morphology of nanofibers, using scanning electron microscopy (SEM), revealed that smooth and knotted fibers with an average diameter of 259 ± 64 nm were obtained, using 12% (w/v) of PANMM in the solution as the optimal concentration for the electrospinning process. This sample was doped with boron (10%, 30%, and 50% (w/w)) to fabricate the samples of PANMM + boric acid (BA) nanofibers. The results demonstrated an increasing trend in the diameter of the nanofibers with an increase in BA up to 50%. At this concentration, smooth fibers were formed with lower knots. Furthermore, the presence of B-O and O-H groups was observed using Fourier transform infrared (FTIR) spectroscopy. To study the tensile properties, the nanofibrous web was tested, and the results showed that introducing 10B to PANMM nanofiber structures reduced the strength of the nanofibers. Thermal gravimetric analysis (TGA) showed that BA-modified PANMM nanofibers had lower thermal degradability, as compared with pure PANMM
    corecore