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Abstract 

In this research paper, the utilization of the magnetic calcium alginate/carboxymethyl 

chitosan/Ni0.2Zn0.2Fe2.6O4 (CA/CMC/Ni0.2Zn0.2Fe2.6O4) was investigated for the simultaneous 

aqueous adsorption of Nd (III), Tb (III), and Dy (III). The magnetic products were characterized 

by FE-SEM, EDX, XRD, FT-IR, TGA, and VSM techniques. The saturation magnetization value 

for Ni0.2Zn0.2Fe2.6O4 and CA/CMC/Ni0.2Zn0.2Fe2.6O4 was found to be 45.87 and 14.14 emu/g, 

respectively. Using RSM, a quadratic polynomial equation was obtained to predict the adsorption 

efficiency of each ion. Under the conditions of pH = 5.5, adsorbent dosage of 0.1 g, initial 

concentration of 30 mg/L, and contact time of 53 min predicted by RSM, the adsorption 

efficiencies of Nd (III), Tb (III), and Dy (III) were respectively 27.59, 21.15, and 22.94 %. The 

isotherm and kinetic data were respectively fitted well with Freundlich and pseudo-second-order 

(PSO) models. The desorption of the loaded ions was effectively carried out by 0.2 M HNO3, 

and the adsorbent was consecutively utilized with 2.54, 1.63, and 1.16 % decrease in adsorption 

efficiency for Nd (III), Tb (III), and Dy (III), respectively, after the forth cycle. Additionally, the 

adsorption behavior of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 towards Nd (III), Tb (III), and Dy (III) was 

studied by using a fixed-bed column technique. 

Keywords: Calcium alginate, Carboxymethyl chitosan, Ni0.2Zn0.2Fe2.6O4, Adsorption, Rare earth 

elements, RSM. 
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1. Introduction 

             Rare earth elements (REEs) are regularly alluded in terms of "seeds of technology" due 

to their utilization in electronic devices, high strength lasting magnets, green energy sectors, 

lasers, automotive catalytic converters, fiber superconductors/optics, etc [1,2]. Because of the 

progressing advancement in new trend-setting innovations, there is an over-expanding interest 

for REEs in the universal markets, with an accentuation on distinguishing new origins to 

guarantee satisfactory supply for utilizing in the present and future. This issue becomes more 

important since more than 90 % of mine production of rare earth occurs in China, and its REEs 

export was decreased 19015 tons from 2009 to 2012, leading to serious problems for REE users 

outside of China. Therefore, REEs recovery from wastes has been one of the most incredible 

worries in the ongoing years [3]. 

            A few techniques, such as solvent extraction, chemical precipitation, ion exchange, 

membrane separation, adsorption and so on, have been applied for the REEs recovery [4,5]. 

Investigators have noted adsorption as a standout technique because of being easy, cost-effective, 

and environmentally friendly for REEs recovery in comparison with the regular techniques [6]. 

            Alginate, as a natural biopolymer, is extracted from brown algae. Some of its benefits, 

such as biodegradability, biocompatibility, being cheap and nontoxic, make it a great potential 

material to be broadly and effectively utilized in water treatment [7-10]. It tends to be utilized to 

produce hydrogels under conditions of moderate pH and temperatures. Alginate can likewise be 

altered via physicochemical procedures to enhance its chemical and mechanical strength [11]. In 

this manner, its adsorption behavior can be increased by raising its adsorption capacity [12]. The 

utilization of alginate in the form of hydrogel beads is a typical technique to enhance its 

adsorption capacity [13]. 
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          Chitosan-based adsorbent materials are broadly applied for the adsorption removal of 

contaminations aqueous solution [14]. Chitosan possesses valuable characteristics, for example, 

biodegradability, hydrophilicity, nontoxicity, biocompatibility, high mechanical strength, film 

preparation, and antibacterial characteristics [15]. Its chemical structure contains amino (-NH2) 

and hydroxyl (-OH) groups as major active functional groups for adsorption of metal ions from 

aqueous media [16,17]. The dissolvability of chitosan can be enhanced by modifying its structure 

with -COOH groups without influencing on the mentioned characteristics [18]. Besides, the 

carboxyl gathering presented in carboxymethyl chitosan (CMC) is additionally useful for the 

adsorption of metal ions. 

            It is necessary to easily separate adsorbents that are applied in the form of ultrafine 

powder for the separation of metal ions from aqueous media. For this purpose, centrifugation and 

filtration methods are not efficient to completely separate such a powder from aqueous media, 

while adsorbents having magnetic properties can be easily separated using an external magnetic 

field [19]. The active surface and small size of nanoparticles lead to their easy aggregation in 

aqueous media [20]. To solve this issue, amending the stability, increasing the application of 

magnetic nanoparticles, and their combining with biopolymers such as alginate and 

carboxymethyl chitosan could be considered as effective methods. 

              The goal of this study was to synthesize the CA/CMC/Ni0.2Zn0.2Fe2.6O4 as a magnetic 

adsorbent for simultaneous adsorption of Nd (III), Tb (III), and Dy (III) ions from aqueous 

solution. The adsorbent was analyzed by FE-SEM, EDX, XRD, FT-IR, TGA, and VSM 

techniques. The influences of adsorbent dosage, contact time, and initial concentration as main 

parameters were studied, and RSM-CCD was used to optimize them. The kinetic and isotherm 
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models were applied for fitting the experimental data. The performance of the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 was also evaluated in a fixed-bed column. 

2. Materials and methods 

2.1. Materials and reagents 

Carboxymethyl chitosan and sodium alginate were purchased from Nantong Chem-Base Co, 

China, and PanReac AppliChem, respectively. Nd(NO3)3.6H2O, Tb(NO3)3·6H2O, 

Dy(NO3).5H2O, Zn(NO3)2, Fe(NO3)3.6H2O, Ni(NO3)2·6H2O, CaCl2, and glutaraldehyde were 

bought from Sigma-Aldrich. Analytical grade materials were used without further purification. 

The experiment solutions of Nd (III), Tb (III), and Dy (III) ions were made by dilution of 1000 

mg/L of ions. HNO3 or NaOH solution with the molarity of 0.1 was utilized to carefully adjust 

the pH of the solutions. 

2.2. Instrumentation and characterization 

The record of FT-IR spectra were performed from 4000 to 450 cm
-1

 on a PerkinElmer, USA, by 

the KBr disk method. To identify the crystalline structure of the product, XRD pattern was taken 

down on a GBC MMA instrument with CuKα radiation (wavelength λ = 0.154 nm) in the 2θ 

range of 10-70
⁰

. The morphological structure and particle size of the products were determined 

by FE-SEM (Zeiss Neon-40, Germany). The magnetic characteristics of the products were 

studied using VSM (Daghigh Kavir Corporation, Iran) at room temperature (RT). Thermal 

analyses were done on a Mettler TGA/SDTA 851e/LF/1100 thermobalance. The temperature of 

the samples was increased from RT to 1000 
⁰

C at rate = 10 
⁰

C/min under a constant flow of N2. 

For analyzing the concentration of Nd (III), Tb (III), and Dy (III), an Agilent 4100 MP-AES 

Spectrometer was used. The Design Expert software, version 10, was utilized to define the 

experimental design by CCD and analyze the regression of the experimental data. 
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2.3. Synthesis of the Ni0.2Zn0.2Fe2.6O4 magnetic nanoparticles 

The Ni0.2Zn0.2Fe2.6O4 magnetic nanoparticles were synthesized using hydrothermal method. A 

mixture of  0.2 M Ni
2+

, 0.2 M Zn
2+

 and 2.6 M Fe
3+

 was prepared in HCl solution, and then NaOH 

solution was added into mixed solution under nitrogen gas and the mixture pH value was 

adjusted to 10.5. 0.3 g of CTAB was added to the mixture, and then it was placed into an 

autoclave (Teflon-lined stainless steel) and maintained at 200 
⁰

C of an oven for 8 h for 

hydrothermal treatment. The temperature of the autoclave was naturally decreased to RT, and the 

precipitate was collected and rinsed several times with deionized water to reach neutral pH. 

Finally, the obtained particles were dried at 50 
⁰

C. 

2.4. Synthesis of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite 

The synthesis procedure of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 was as follows: Sodium alginate (1 g) 

was dissolved in 80 mL of deionized water at RT using a laboratory stirrer. 0.5 g of the 

carboxymethyl chitosan powder was added into the solution and homogeneously mixed. 0.7 g of 

the Ni0.2Zn0.2Fe2.6O4 was added to the mixture of the biopolymers. To obtain a homogeneous 

blend solution, the mixture of biopolymers and magnetic particles was stirred at RT for 24 h. 

Then, it was added to the solution of calcium chloride 0.05 M and 2 % glutaraldehyde for the 

gelation process. An external magnetic field was used to separate the resulting bionanocomposite 

from solution, and then it was washed several times with deionized water for removing 

remaining calcium chloride and glutaraldehyde until the pH value the solution was reached 7. 

The CA/CMC/Ni0.2Zn0.2Fe2.6O4 bionanocomposite was dried at 50 
°
C. Finally, it was powdered. 

2.5. Batch adsorption 

The adsorption experiments of Nd (III), Tb (III), and Dy (III) by the CA/CMC/Ni0.2Zn0.2Fe2.6O4 

bionanocomposite were done in 125 mL flasks containing 50 mL solutions prepared from the 
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dilution of 1000 mg/L stock solutions at different pHs, adsorbent dosages, contact times, and 

initial concentrations with the ratio of 1:1:1. The agitation of the flasks was carried out on a 

laboratory shaker (rpm = 180). After adsorption process for a predefined time, the adsorbent was 

externally separated by a magnetic field, and the adsorption efficiency and adsorption capacity of 

the metal ions by the CA/CMC/Ni0.2Zn0.2Fe2.6O4 were computed using the equations as 

following: 

Adsorption efficiency (%) = (C0- Ce)/Co × 100                                                                  (1) 

qe = (C0- Ce) × V/m                                                                                                             (2) 

qt = (C0- Ct) × V/m                                                                                                              (3) 

Where qe and qt (mg/g) respectively refer to the quantities of metal ion adsorbed on the adsorbent 

at equilibrium and adsorption time t (min), C0 (mg/L) is the initial concentration of metal ion, 

and Ce (mg/L) is the equilibrium concentration of metal ion. Moreover, Ct refers to the 

concentration of metal ion in solution at time t, V is the volume (L) of solution, and m refers to 

the weight (g) of the adsorbent. 

2.6. Central composite design 

           Experimental design is applied by investigators to decrease the number of experiments in 

the adsorption process. It also presents helpful information about the effect of independent 

parameters individually and/or interactively that leads to a decrease in experimental error [21]. 

RSM was utilized to model the adsorption process of the ions by investigating the independent 

variables including adsorbent dosage, contact time, initial concentration, and response (ions 

adsorption efficiency). For simultaneous adsorption of Nd (III), Tb (III), and Dy (III) ions by the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 by using batch mode, CCD was utilized at five levels (-α (-2), low (-

1), central (0), high (+1) and +α (+2)) (Table 1). 
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       Analysis of variance (ANOVA) was used to obtain information about the adequacy of the 

models by evaluating coefficient of determination (R
2
), lack of fit, and the Fisher test (F-value) 

values [22]. The quadratic polynomial model for response versus the independent variables was 

presented as follows [23]: 

2

0

1 1 1 1

k k k k

i i ij i j ii i

i i j i

Y x x x x    
   

                                                                     (4) 

Where Y refers to the predicted response (adsorption efficiency), and
0 ,

i ,
ii , and ij

respectively refer to the constant coefficient, linear coefficient, quadratic coefficient, and 

interaction coefficient. Notably, xi and xj are the independent variables, k shows the number of 

the independent variables, and   is the residual error. 

2.7. Column mode 

Fixed-bed column investigation is necessary to successfully design a process and study the 

behavior of adsorbent in a large-scale utilization. To investigate the fixed-bed column, a column 

made of glass with an internal diameter of 0.5 cm and a length of 12 cm was used. 0.3 g of the 

adsorbent was mixed with 1.8 g of acid-cleaned sand, and the mixture was packed in the column 

between two layers of glass wool. Sand was applied to decrease the pressure drop. The final 

height of the mixture in the column was about 6.5 cm. An upward flow rate (1 mL/min) was 

provided by a peristaltic pump to flush the column with deionized water for 1 h. Then, the 

column was fed with a ternary solution of the ions at 30 mg/L initial concentration as an influent 

for 520 min. The collection of the effluent was performed every 10 min by a fraction collector, 

and the concentration of the ions was determined by Agilent 4100 MP-AES Spectrometer. 

The breakthrough curve is usually shown by Ct/C0 versus time. The amount of ion adsorbed (qtotal, 

mg) was obtained by calculating the curve of breakthrough (upper area) by using the following 

equation: 
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∫    

  

  

      

  
                                                                                                   (5) 

Where Q is the flow rate (mL/min) that was determined via division of the effluent volume (Veff, 

mL) to the total time (ttotal, min): 

  
    

      
                                                                                                                             (6) 

The entire quantity of the metals passed through the column (mg) was obtained 

by the following equation: 

        
           

    
                                                                                                           

(7) 

The total metal adsorption efficiency was calculated from the ratio of the 

entire quantity of the metals sent to the column (qtotal) to the metal mass 

adsorbed (mtotal) by the following equation: 

                       
      

      
                                                                              

(8) 

The capacity of equilibrium adsorption (qe (mg/g)) and the equilibrium metal 

concentration (Ce (mg/L)) were respectively computed using Eqs. (9) and (10) 

as following: 

    
      

 
                                                                                                                              

(9) 

    
             

    
                                                                                                            

(10) 
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Where m shows the adsorbent mass (g). 

2.8. Error analysis 

Error analysis was used to optimize the fitness of the experimental data obtained from the non-

linear approach. In this study, Chi-square (ꭓ
2
) was employed to compare the validity of each 

model by the following equation: 

ꭓ
2 
= ∑

               

      

 
   

 

                                                                                                    (11) 

Where n shows the number of data points, qe,exp is the experimental capacity of the adsorbent, 

and qe,cal refers to the computed capacity of the adsorbent. 

3. Results and discussion 

3.1. Products characterization 

          Fig. 1 indicates the XRD pattern of the Ni0.2Zn0.2Fe2.6O4. The peaks at 2θ = 18.13
°
, 30.07

°
, 

35.50
°
, 37.08

°
, 43.07

°
, 53.95

°
, 56.96

°
 and 63.89

°
 are in agreement with the standard pattern of 

nickel zinc ferrite (JCPDS 08-0234) [24]. Full Width at Half Maximum (FWHM) of the 

strongest reflection of the XRD pattern was used to estimate the average crystal size based on the 

Scherrer equation as following [25]: 

D = k λ/β cos θ                                                                                                                (12) 

Where k refers to the function of shape (k = 0.89), and λ refers to the radiation X-ray 

wavelength. Moreover, β and θ respectively refer to the Full Width at Half Maximum (FWHM) 

at 2θ = 35.50
°
, and the diffraction angle. Based on the Scherrer equation, the calculated value of 

D was 27.68 nm. 

           The FE-SEM image of the Ni0.2Zn0.2Fe2.6O4 in Fig. 2A indicates that the synthesized 

particles are nearly spherical in shape and homogenous in distribution with a diameter less than 

100 nm. Fig. 2B shows the distribution of the magnetic nanoparticles on the surface of the 
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CA/CMC or embedding with the CA/CMC that confirms the successful synthesis of the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4  magnetic bionanocomposite. 

           Fig. 3 indicates the FT-IR spectrum for CA, CMC, Ni0.2Zn0.2Fe2.6O4 and 

CA/CMC/Ni0.2Zn0.2Fe2.6O4. The FT-IR spectrum for CA and CMC in Figs. 3A and 3B, 

respectively, shows O-H stretching vibration at 3389 (CA) and 3436 (CMC) cm
-1

, carboxyl 

groups asymmetrical stretching at 1622 (CA) and 1631 (CMC) cm
-1

, carboxyl groups 

symmetrical stretching at 1423 (CA) and 1411 (CMC)  cm
-1

 and C-O-C stretching at 1052 (CA) 

and 1061 (CMC) cm
-1

 [26,27]. The FT-IR spectrum of the Ni0.2Zn0.2Fe2.6O4 in Fig. 3C shows a 

broad band at around 3424 cm
-1

 and less intensive band at 1633 cm
-1

 that are related to the O-H 

groups stretching vibration [28]. The bands at 2925 and 2853 cm
-1

 are assigned to the anti-

symmetric and symmetric C-H vibrations of CTAB [29]. The band at 567 cm
-1

 attributes to 

intrinsic metal stretching vibrations at the tetrahedral site (Fe-O), and octahedral metal stretching 

(M-O) is seen at around 478 cm
-1

 [28]. The successful synthesis of the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 can be confirmed by comparing its spectrum shown in Fig. 3D with 

other spectra. 

               N2 adsorption–desorption isotherm and the corresponding Barrett-Joyner-Halenda 

(BJH) pore size distribution of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 are shown in Fig. 4. The nitrogen 

adsorption-desorption isotherm for the sample in Fig. 4A is assigned to type IV indicating the 

presence of mesoporous structure. The Brunauer–Emmett–Teller (BET) surface area, pore 

volume, and pore size (obtained by the BJH method (Fig. 4B)) were calculated to be 7.1143 

m
2
/g, 0.034971 cm³/g, and 19.0379 nm, respectively. The results clearly demonstrate the 

formation of CA/CMC/Ni0.2Zn0.2Fe2.6O4 with nano size pores. 
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             EDX was recorded to analyze the elements of the products, and the results are presented 

in Fig. 5. Fig. 5A shows Ni, Zn, Fe, and O peaks that confirm the formation of the 

Ni0.2Zn0.2Fe2.6O4. The elemental analysis of the nanocomposite in Fig. 5B represents similar 

peaks available in Fig. 5A along with the new peaks for N and Ca because of combining the 

nanoparticles with CA and CMC. Sodium peak is not seen in the spectrum of the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4, suggesting that sodium ions were released completely from the 

matrix of sodium alginate into the solution during the crosslinking reaction process of sodium 

alginate with calcium. EDX spectrum was also recorded after the adsorption process and the 

result is presented in Fig. 5C. The existence of Nd (III), Tb (III), and Dy (III) in the spectrum 

strongly confirms the successful adsorption of these ions by the CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

         The CA/CMC/Ni0.2Zn0.2Fe2.6O4 weight loss curve recorded in the range of RT to 1000 
◦
C is 

demonstrated in Fig. 6. As it is seen, there are three different weight-loss steps in the TGA curve 

of the CA/CMC/Ni0.2Zn0.2Fe2.6O4. Obviously, the first step (around 190 
◦
C) with a weight loss of 

8.77 % can be attributed to trapped and physisorbed water evaporation. The second step between 

around 190 and 550 
◦
C is the largest weight loss with the amount of 35.08 % that could be due to 

sorption and degradation of CA and CMC. The last step with 22.95 % weight loss at temperature 

beyond 550 
◦
C could be related to the further decomposition of CA and CMC and their 

conversion to CO2 and H2O. At the end of the process, the residue percentage is about 33.2 % 

that is principally assigned to the presence of the Ni0.2Zn0.2Fe2.6O4. 

           According to the magnetic hysteresis loops in Fig. 7A, the magnetic saturation value for 

Ni0.2Zn0.2Fe2.6O4 is about 45.87 emu/g that indicates the superparamagnetic behavior of the 

synthesized product. Based on Fig. 7B, it is obvious that the process of the synthesis of the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 results in a decrease of saturation magnetization to the value of 14.14 
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emu/g. This decline is due to combining the magnetic nanoparticles by CA and CMC. Despite 

this difference, the CA/CMC/Ni0.2Zn0.2Fe2.6O4 can be easily separated from aqueous solution 

using an external magnetic field to avoid secondary pollution. Fig. 7C shows the easy separation 

of the metal ions-loaded adsorbent from the solution by applying an external magnetic field. 

3.2. Effect of pH 

Solution pH is considered as an essential parameter in the process of adsorption owing to its 

effect on metal ions solubility, counter ions concentration on the adsorbent functional groups, 

and the adsorbate ionization degree. In this study, the influence of pH value on the process of 

adsorption was considered from 1.5 to 5.5. The pHZPC of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 was 

found to be 6. Since the precipitation of the ions may occur at pH values higher than 5.5, the 

experiments were carried out near to pHZPC; therefore, adsorption of the ions were not studied at 

pH ˃ 5.5. As it is indicated in Fig. 8, the adsorption efficiency for the ions at pH = 1.5 is zero 

that indicates a highly acidic solution strongly affects the ions adsorption. At acidic solution, H
+
 

concentration and its mobility are high that lead to strong competition with the ions to occupy the 

active sites. Actually, the protonation of the active sites occurs in a low value of pH, leading to 

electrostatic repulsion between positively charged cations and positively charged active sites; 

therefore, the value of adsorption efficiency is low. As the pH of solution increases, the amount 

of H
+
 being available in the solution decreases; hence, more negatively charged sites are 

available that facilitate higher uptake of the ions by electrostatic attraction [30]. According to the 

obtained results, further adsorption studies were performed at pH = 5.5 as an optimum value. 

3.3. Central composite design 

A total number of 32 experiments suggested by Design Expert 10.0 was performed to investigate 

the interaction of contact time (X1), adsorbent dosage (X2), Nd (III) concentration (X3), Tb (III) 
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concentration (X4), and Dy (III) concentration (X5). Table 1 indicates the design of experiments 

plus the predicted and actual values (adsorption efficiency (%)). Quadratic regression modeling 

was applied between the response and independent variables for each metal, and the obtained 

equations were as follows: 

Nd (III) adsorption efficiency (%)= 45.421 + 1.866 X1 + 514.024 X2 – 0.571 X3 – 1.322 X4 + 

0.175 X5 – 0.0043 X1X3 + 0.00312 X1X4 – 0.00255 X1X5 – 2.27 X2X1 + 1.796 X2X3 + 1.351 

X2X4 + 0.759 X2X5 + 0.00712 X3X4 -0.00258 X3X5 + 0.00469 X4X5 – 0.0126 X1
2
 – 1237.07 X2

2
 

– 0.000393 X3
2 

+ 0.00122 X4
2
 – 0.00378 X5

2
                                                                                                                         

(13) 

Tb (III) adsorption efficiency (%) = 51.793 + 1.663 X1 + 410.645 X2 – 0.502 X3 – 0.603 X4 + 

0.24 X5 – 7.549 X1X3 + 1.073 X1X4 – 1.132 X1X5 – 2.253 X2X1 + 1.651 X2X3 + 1.185 X2X4 + 

1.283 X2X5 + 0.00328 X3X4 – 0.00178 X3 X5 + 0.00243 X4X5 -0.0124 X1
2
 -1059.01 X2

2
 – 

0.0001808 X3
2 

+ 0.000553 X4
2 

– 0.00103X5
2
                                                                                                               

(14) 

Dy (III) adsorption efficiency (%) = 58.691 + 1.632 X1 + 405.813 X2 - 0.354 X3 – 0.778 X4 – 

0.315 X5 – 0.00156 X1X3 + 0.00241X1X4 – 0.000818 X1X5 – 2.405 X2X1 + 1.486 X2X3 + 1.371 

X2X4 + 1.272 X2X5 + 0.00183 X3X4 – 0.00243 X3X5 + 0.00253 X4X5 – 0.0122 X1
2
 – 1039.17 

X2
2
 + 0.000237 X3

2 
+ 0.000437 X4

2
 – 0.0000959 X5

2                 
                                                                              

(15) 

The reliability of the models was examined by ANOVA. ANOVA represents the significance of 

variations associated with the models in comparison with the variations related to the 

experimental data [22]. The values of R
2
 and Radj

2
 in Table 2 indicate a good agreement between 

the predicted and experimental data. In Table 2, the F-values with a very low probability value 
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of 0.0001 show that the predicted models are statistically significant. The ‘Adequate precision’’ 

value for Nd (III), Tb (III), and Dy (III) obtained by ANOVA are favorable as a value > 4 is 

preferable [31]. Additionally, the coefficient of variation value (C.V. %) is low, showing the 

reliability of the modeling. As can be observed from Fig. 9, the dispersal of the data points is not 

evident. A relatively straight line of normal probability plot should follow a nearly straight line 

to be favorable. In addition, the residuals are dispersed randomly in Figs. 10 and 11, indicating a 

favorable fitness between the predicted and experimental data. 

3.4. Three-dimensional response surface plot 

             To understand the main and interaction influences of two parameters in the adsorption 

process, 3D response surface plots are applied by considering them as function of adsorption 

efficiency while other factors are kept at constant values. The interactive effects of contact time, 

adsorbent dosage, and initial concentration of the ions are presented in Figs. 12A-I.  

             The effect of contact time and adsorbent dosage simultaneously on the ions adsorption is 

seen in Figs. 12A-C. It is evident that adsorption efficiency increases by enhancing contact time 

and adsorbent dosage. An increase in adsorption efficiency by an enhancement in the dosage of 

the adsorbent can be interpreted that increasing adsorbent dosage supplies more surface area and 

active binding sites for the ions adsorption onto the adsorbent [32]. According to the results of 

affecting time on the adsorption efficiency, two phases for the adsorption of the metal ions are 

seen as follows: the first phase that is sharper is related to the large number of the active sites 

that are empty on the adsorbent surface and high metal ions concentration. The second phase is 

assigned to the gradual decrease in the active sites, the decrease in intra-particle diffusion with 

the contact time, and the decrease in driving force that lead to an equilibrium state.  

            The concurrent influence of contact time and initial concentration in Figs. 12D-F shows 

higher adsorption efficiency of the ions at lower initial concentration since the adsorbent surface 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

16 
 

area is larger for the adsorption of the metal ions. An enhancement in the concentration of ions 

causes a decrease in adsorption efficiency because of decreasing available active sites for the 

ions adsorption as a result of the adsorption sites saturation [33]. Due to the higher ratio of initial 

number of the ions to the available adsorption sites at a higher ions concentration, lower 

adsorption efficiency is expected. It can be seen that increasing contact time beyond the optimum 

value leads to a decrease in adsorption efficiency for all the ions that could be due to the release 

or desorption of some ions from the substrate surfaces [34]. 

           Figs. 12G-I are related to the simultaneous influence of adsorbent dosage and initial 

concentration. An increase in adsorbent dosage causes that adsorption efficiency increases due to 

the reason mentioned above. However, increasing adsorbent dosage at more than the optimum 

value leads to a decrease in adsorption efficiency due to the agglomeration of the adsorbent 

particles and screening effect. The total surface area of the adsorbent declines by such 

agglomeration, resulting in a reduction in the ions adsorption efficiency [35]. 

3.5. Confirmation experiments 

The validity of the RSM model was investigated by performing four experiments for Nd (III), Tb 

(III), and Dy (III) ions adsorption onto the adsorbent. The adsorption efficiency acquired for each 

ion under the conditions given by CCD was compared with the value predicted by RSM. As can 

be observed from the obtained results presented in Table 3, difference between the values 

obtained from the experiments and predicted by the model results in error percentage in the 

range of 0.54-1.87, 0.58-2.28, and 0.61-2.11 % for Nd (III), Tb (III), and Dy (III), respectively. 

At pH = 5.5, the adsorption efficiency under the conditions given by the model (adsorbent 

dosage = 0.1 g, contact time = 53 min, and initial concentration = 30 mg/L) was calculated to be 

95.72, 96.17, and 99.44 % with 1.17, 0.58, and 0.61 % error for Nd (III), Tb (III), and Dy (III), 
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respectively, indicating its agreement with the experimental value. The errors show the capability 

of the RSM model for the prediction of values that are favorably in accordance with the 

experimental data. 

3.6. Batch adsorption kinetic studies 

          Kinetic investigations were carried out using the solutions with the volume 50 mL 

prepared at 30 mg/L of Nd (III), Tb (III), and Dy (III) ions that were contacted with 0.09 g of the 

adsorbent at various times. Non-linear pseudo-first-order (PFO), PSO, and intra-particle 

diffusion (IPD) models were applied to model the kinetic data of Nd (III), Tb (III), and Dy (III) 

ions adsorption. The equations are as follows [36,37]: 

qt = qe (1 − exp
−K

1
t
 )             PFO                                                                          (16) 

qt = K2qe
2
t/1 + K2qet             PSO                                                                         (17) 

qt = Kit
0.5

 + C                        IPD                                                                          (18) 

Where K1 (1/min), K2 (g/mg min), and Ki (1/min) respectively refer to the PFO rate constant, 

PSO rate constant, and the rate constant of IPD. Moreover, C provides information about the 

thickness of the boundary layer: higher value of C is related to the boundary layer diffusion 

influence. 

          The initial rate of adsorption (h) can be computed using K2 and qe values by the following 

equation: 

h = K2qe
2
                                                                                                                               (19) 

          The values of kinetic parameters are shown in Table 4. As it is obvious from the results, 

the highest values of R
2
 and the lowest values of ꭓ

2 
obtained by PSO shows that the main 

mechanism for controlling the adsorption of Nd (III), Tb (III), and Dy (III) ions onto the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 is chemisorption. The values of R
2
 obtained by IPD model show that 
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the adsorption of the ions is a multi-stage process. The stages were related to the strong 

electrostatic forces of attractions between the ions and the functional groups of the adsorbent, 

and gradual adsorption by the ions diffusion into the pores of the adsorbent until the occupation 

of most or all of the active sites. In addition, IPD model was not the sole rate-limiting step (the 

related plots do not pass through the origin). 

3.7. Batch adsorption isotherm studies 

         Batch isotherm experiments were performed using 50 mL of metal ions solutions at different 

concentrations in the range of 30-180 mg/L contacting with 0.09 g of the CA/CMC/Ni0.2Zn0.2Fe2.6O4 

at pH = 5.5. The data obtained at equilibrium were modeled by Langmuir and Freundlich models 

that are respectively related to monolayer and multilayer adsorption. The nonlinear Langmuir and 

Freundlich models were used according to following equations [38,39]: 

qe =   
       

       
                    Langmuir                                                                                  (20) 

qe = K Ce
1/n                   

        Freundlich                                                                                 (21) 

Where qe and qm (mg/g) respectively refer to the equilibrium adsorption and maximum 

adsorption capacities, and Ce (mg/L) shows the adsorbate equilibrium concentration. Moreover, 

b (L/mg) and K (mg
1-1/n

 L
1/n

/g) respectively refer to Langmuir and Freundlich constants, and n 

shows adsorption intensity. Adsorption is favorable if n > 1. 

        The coefficient of determination (R
2
) values and the corresponding parameters obtained by 

the models are presented in Table 5. The n values are 9, 9.26, and 9.71 for Nd (III), Tb (III), and 

Dy (III), respectively, showing a strong interaction between the CA/CMC/Ni0.2Zn0.2Fe2.6O4 and 

the metal ions. According to the values of R
2 

and ꭓ
2
, it is obvious that Freundlich model better 

fits the experimental data than Langmuir model for Nd (III), Tb (III), and Dy (III) ions 
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adsorption. Consequently, the adsorption of the ions is multilayer adsorption, and the adsorption 

takes place on a non-uniform surface. 

3.8. Ionic strength effect  

The ions adsorption can be affected by the co-ions that are available in the solution. The 

influence of salt concentration, known as ionic strength, on the adsorption efficiency of the ions 

by the CA/CMC/Ni0.2Zn0.2Fe2.6O4 was evaluated using NaNO3 at various concentrations ranging 

from 0.02 to 0.1 M, and the results are presented in Fig. 13A. As it is illustrated in Fig. 13A, the 

presence of NaNO3 has a greater negative effect on the adsorption efficiency of Nd (III) in 

comparison with Tb (III) and Dy (III). The adsorption efficiency for Nd (III), Tb (III), and Dy 

(III) respectively decreases from 92.33 to 77.12, 93.91 to 85.6, and 96.25 to 91.43 % by an 

increase in NaNO3 concentration. This phenomenon can be related to the competition between 

the metal ions and sodium ions for the available active adsorption sites of the adsorbent [40]. In 

addition, the aggregation of adsorbent could be heightened by enhancing ionic strength that 

results in a decrease in adsorption sites of adsorbent [41]. 

3.9. Thermodynamic parameters 

       Thermodynamic parameters are considered as key factors to realize the optimal condition 

and give further information regarding changes in inherent energetic related to adsorption 

process. The adsorption process was conducted at various temperatures (25, 35, and 45 
°
C) to 

obtain ΔS
°
 and ΔH

°
 values based on the following equation: 

Ln Kd =   
   

 
  

   

  
                                                                                                           (22) 

Where R, T, and Kd respectively refer to the gas constant (8.314 J/mol K), temperature (K), and 

distribution coefficient that was obtained by the equation as following: 

Kd =   
  

  
                                                                                                                            (23) 
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Where Ce refer to the equilibrium concentration in the solution (mg/L). ΔH
°
 value for each metal 

is calculated from the slope of Ln Kd versus 1/T plot, and ΔS
°
 value is computed from its 

intercept (Fig. 13B). The ∆G
◦
 values were also calculated at different temperatures by using the 

following equation: 

∆G
◦
 = - RT Ln Kd                                                                                                             (24) 

            Table 6 shows the values of thermodynamic parameters. The ∆G
◦
 values for the ions are 

positive at all temperatures that show the process is non-spontaneous, and the adsorption of the 

ions onto the adsorbent requires additional energy from an external source. The lower values of 

∆G
◦
 at higher temperatures mean that an increase in temperature leads to an increase in the 

tendency of spontaneous reaction. The ΔH
°
 value ˃ zero shows the endothermic adsorption of the 

metal ions, and the ΔS
°
 value ˃ zero expresses the increase in randomness at the interface of 

solid–solution during the metal ions fixation on the CA/CMC/Ni0.2Zn0.2Fe2.6O4 surface [39]. 

3.10. Reusability studies 

            The synthesized CA/CMC/Ni0.2Zn0.2Fe2.6O4 was utilized in four consecutive adsorption-

desorption cycles to investigate its reusability. For this purpose, the adsorption of the ions by the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 was performed at initial concentration = 30 mg/L and pH = 5.5 with 

0.1 g of the adsorbent for 53 min. The batch flask containing the CA/CMC/Ni0.2Zn0.2Fe2.6O4 and 

50 mL of 0.2 M HNO3 as eluent was shaken for 2 h for desorption of the ions loaded onto the 

adsorbents. Then, the adsorbent was separated by an external magnetic field from the HNO3 

solution, and the functional groups were neutralized by NaOH solution. The neutralized 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 was then used for the adsorption of 30 mg/L of the ions in the next 

cycle. 
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           The results of adsorption efficiency in four cycles are shown in Fig. 13C. Due to the 

decrease in the release of the ions and number of active sites by acid treatment during the cycles, 

the  adsorption efficiency for Nd (III), Tb (III), and Dy (III) respectively decreases from 94.18 to 

91.64, 96.45 to 94.82, and 98.33 to 97.17 %. After the last cycle, the adsorption efficiency of the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 indicates 2.54, 1.63, and 1.16 % lose for Nd (III), Tb (III), and Dy, 

respectively, in comparison with the first cycle. The results also indicated that the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 remained magnetic during the process of adsorption-desorption. 

According to the results, the adsorbent suitability for a practical application can be concluded. 

3.11. Column mode 

Fig. 14A presents the Nd (III), Tb (III), and Dy (III) ions adsorption breakthrough curves 

obtained from the fixed-bed column packed with the CA/CMC/Ni0.2Zn0.2Fe2.6O4. According to 

the obtained results, the breakthrough and exhaustion times that respectively correspond to 

Ce/C0=0.05 and 0.95 are about 95 and 410 min for Nd (III), 105 and 430 min for Tb (III), and 

120 and 440 min for Dy (III). Exhaust volume (Veff) for Nd (III), Tb (III), and Dy (III) is 

respectively 410, 430, and 440 mL. 

Nonlinear Thomas and Yan models were utilized to fit the experimental data of the fixed-bed 

column by Eq. (25) and Eq. (26), respectively. 

0
0

1

1 exp

t

Th e
Th

C

C K q x
K C t

Q


 

  
 

                                                                                               (25) 

  

  
   

 

   
    

   
  

                                                                                                       (26) 

Where ThK  shows the rate constant (mL/min mg), a is a constant coefficient and  eq  is the 

maximum adsorption capacity (mg/g), x  is the mass of adsorbent (g), 0C  is the initial 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

22 
 

concentration (mg/L) of the ions, 
tC  is outlet ions concentration (mg/L), t is the contact time 

(min), and Q  is the flow rate (mL/min). 
ThK  , a, and 

eq  values are computed using the slope and 

intercept of the plot of 
0

tC

C
 against t. 

The parameters obtained by the models (Figs. 14B-D) are indicated in Table 7. The adsorption 

capacity (qe) for Nd (III), Tb (III), and Dy (III), calculated by Eq. (9), is respectively 22.70, 

24.00, and 25.54 mg/g under the studied conditions. According to the values of R
2
, both models 

can fit the experimental data well but Yan model presents higher values of R
2
 in comparison with 

Thomas model. The rate constant value of Thomas (KTh) for Nd (III) is higher than those of Tb 

(III), and Dy (III), showing higher intensity of Nd (III) adsorption onto the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4, while the amount of maximum adsorption capacity (qe) for Dy (III) 

is greater than the value obtained for Nd (III) and Tb (III). This is in conformity with the results 

achieved from experiments of batch adsorption. 

4. Conclusion 

In this paper, the CA/CMC/Ni0.2Zn0.2Fe2.6O4 was synthesized successfully by the gelation 

process of CA/CMC in the presence of the Ni0.2Zn0.2Fe2.6O4. RSM-CCD was applied to explore 

the influences of experimental parameters on Nd (III), Tb (III), and Dy (III) ions adsorption. The 

conditions predicted by RSM for optimum adsorption of 30 mg/L of the ions were 0.1 g of the 

adsorbent and 53 min contact time at pH = 5.5. The experimental data were fitted by isotherm 

and kinetic models. PSO kinetic model fitted the data better compared with IPD and PFO 

models. The data of equilibrium were fitted well with Freundlich model. The values of ΔH
° 

revealed the endothermic adsorption process of the metal ions. 0.2 M HNO3 was used for 

regeneration of the ion-loaded adsorbent, and the adsorbent was repeatedly used in four cycles 
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with more than 91, 94, and 97 % adsorption efficiency for Nd (III), Tb (III), and Dy (III), 

respectively, after the fourth cycle. Besides, the ions were successfully adsorbed in a continuous 

process by applying a packed-bed column, and the data were found to be fitted well by Thomas 

and Yan models. The results showed that the CA/CMC/Ni0.2Zn0.2Fe2.6O4 can be applied as a 

potential adsorbent in both adsorption modes (batch and column) for Nd (III), Tb (III), and Dy 

(III) ions adsorption. 
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Table 1. CCD levels, experimental design and the responses. 

Symbol Factors Unit Levels 

 -α (-2) Low (-1) Central 

(0) 

High (1) +α (+2) 

X1 Contact time min 2 19 36 53 70 

X2 Adsorbent dosage g 0.05 0.125 0.2 0.275 0.35 

X3 Nd (III) concentration mg/L 30 45 60 75 90 

X4 Tb (III) concentration mg/L 30 45 60 75 90 

X5 Dy (III) concentration mg/L 30 45 60 75 90 

Run Factors Nd adsorption efficiency 

 (%)   

Tb adsorption efficiency (%) Dy adsorption 

efficiency (%) 

X1 X2 X3 X4 X5 Observed Predicated Observed Predicated Observed Predicated 

1 
36 0.2 60 60 30 90.76 90.92 95.85 96.19 97.53 98.38 

2 53 0.275 75 75 75 94.56 95.81 96.87 97.99 98.11 99.49 

3 36 0.2 90 60 60 87.96 86.97 90.53 89.74 92.89 92.17 

Journal Pre-proof



Jo
urnal P

re-proof

30 
 

4(C) 36 0.2 60 60 60 91.45 91.56 94.03 93.83 95.75 95.59 

5 19 0.125 45 45 75 67.08 65.91 70.16 68.76 73.17 71.86 

6 36 0.2 60 90 60 89.7 90.18 91.64 91.83 92.85 92.90 

7 19 0.125 75 75 75 54.56 53.65 57.87 57.07 59.06 58.32 

8 19 0.125 75 45 45 62.65 61.90 67.59 66.71 72.45 71.31 

9 70 0.2 60 60 60 88.12 86.43 90.56 88.55 92.92 90.59 

10 53 0.125 75 75 45 71.98 71.84 77.64 77.97 79.51 79.74 

11(C
*
) 36 0.2 60 60 60 91.97 91.56 94.46 93.83 96.01 95.59 

12 2 0.2 60 60 60 65.78 67.47 67.73 70.34 69.45 72.25 

13 53 0.275 75 45 45 92.56 93.97 95.54 96.59 97.98 98.96 

14 19 0.275 75 45 75 89.1 89.74 91.94 91.86 95.7 95.71 

15 53 0.125 45 45 45 87.6 87.20 90.19 89.92 92.85 92.51 

16 36 0.2 30 60 60 94.46 95.45 96.21 97.60 98.25 99.45 

17(C) 36 0.2 60 60 60 91.72 91.56 94.09 93.83 95.71 95.59 

18(C) 36 0.2 60 60 60 90.96 91.56 93.52 93.83 95.35 95.59 

19(C) 36 0.2 60 60 60 91.58 91.56 93.85 93.83 95.32 95.59 
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20 36 0.2 60 30 60 95.64 95.16 94.43 94.84 98.65 99.07 

21 19 0.275 45 45 45 92.75 92.82 94.74 94.09 97.54 96.76 

22 53 0.275 45 75 45 94.56 95.23 96.44 97.00 98.45 99.05 

23 19 0.275 75 75 45 92.49 92.81 94.63 94.58 96.2 95.99 

24 53 0.125 45 75 75 76.01 75.45 79.06 78.86 81.63 81.69 

25 19 0.125 45 75 45 59.07 57.58 68.72 67.35 69.38 67.85 

26(C) 36 0.2 60 60 60 91.7 91.56 93.65 93.83 95.9 95.59 

27 53 0.125 75 45 75 65.46 65.63 72.26 72.55 76.16 76.61 

28 19 0.275 45 75 75 90.07 89.98 94.78 94.21 96.59 96.21 

29 53 0.275 45 45 75 94.11 95.10 96.07 96.59 98.5 99.31 

30 36 0.05 60 60 60 35.32 37.94 45.19 47.04 47.59 49.51 

31 36 0.35 60 60 60 92.14 89.52 94.22 92.97 96.36 94.91 

32 36 0.2 60 60 90 85.56 85.40 89.35 89.61 93.01 92.63 

*
Central point 
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  Table 2. ANOVA results for adsorption of the ions by the CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

Dy (III)  Tb (III)  Nd (III)  

DF
a 

 

Source P-value F-Value MS
c 

SS
b 

 P-value F-Value MS
c 

SS
b 

 P-value F-Value MS
c 

SS
b 

˂0.0001 88.64 269.73 5394.59  .....1 ˂ 104.63 272.78 5455.58  .....1˂  111.8 340.81 6816.27 20 Model 

.....1 ˂ 165.81 504.53 504.53  .....1 ˂ 190.92 497.77 497.77  .....1 ˂ 176.86 539.13 539.13 1 X1 

.....1 ˂ 121 368.18 368.18  .....1 ˂ 145.56 379.51 379.51  .....1 ˂ 128.45 391.55 391.55 1 X1
2 

.....1 ˂ 1016.05 3091.74 3091.74  .....1 ˂ 1213.69 3164.35 3164.35  .....1 ˂ 1308.75 3989.46 3989.46 1 X2 

.....1 ˂ 329.38 1002.26 1002.26  .....1 ˂ 399.24 1040.89 1040.89  .....1 ˂ 465.95 1420.35 1420.35 1 X2
2
 

0.0003 26.10 79.42 79.42  .....1 ˂ 35.57 92.75 92.75  .....1 ˂ 35.40 107.91 107.91 1 X3 

0.8713 0.027 0.084 0.084  0.8939 0.019 0.049 0.049  0.7887 0.075 0.23 0.23 1 X3
2
 

0.0012 18.77 57.10 57.10  0.0433 5.21 13.59 13.59  0.0050 12.21 37.23 37.23 1 X4 

0.7657 0.093 0.28 0.28  0.6844 0.17 0.45 0.45  0.4094 0.74 2.24 2.24 1 X4
2
 

0.0020 16.28 49.54 49.54  0.0004 24.91 64.94 64.94  0.0026 14.98 45.68 45.68 1 X5 

0.9478 0.00449 0.014 0.014  0.4506 0.61 1.59 1.59  0.0230 6.97 21.24 21.24 1 X5
2
 

.....1 ˂ 49.48 150.55 150.55  .....1 ˂ 50.68 132.14 132.14  .....1 ˂ 43.97 134.04 134.04 1 X1X2 

0.3787 0.84 2.56 2.56  0.6428 0.23 0.59 0.59  0.0288 6.32 19.25 19.25 1 X1X3 

0.1861 1.99 6.05 6.05  0.5117 0.46 1.2 1.2  0.0947 3.34 10.19 10.19 1 X1X4 

0.6415 0.23 0.7 0.7  0.4893 0.51 1.33 1.33  0.1642 2.22 6.77 6.77 1 X1X5 

0.0028 14.71 44.76 44.76  0.0008 21.17 55.2 55.2  0.0007 21.43 65.33 65.33 1 X2X3 

0.0047 12.51 38.07 38.07  0.0070 10.92 28.46 28.46  0.0051 12.14 37.00 37.00 1 X2X4 

0.0073 10.77 32.78 32.78  0.0043 12.79 33.35 33.35  0.0762 3.83 11.68 11.68 1 X2X5 

0.3645 0.89 2.72 2.72  0.0940 3.36 8.76 8.76  0.0037 13.49 41.12 41.12 1 X3X4 

0.2343 1.58 4.82 4.82  0.3401 0.99 2.59 2.59  0.2104 1.77 5.39 5.39 1 X3X5 

0.2169 1.72 5.22 5.22  0.2012 1.85 4.82 4.82  0.0339 5.86 17.87 17.87 1 X4X5 

  3.04 33.47    2.61 28.68    3.05 33.53 11 Residual 
0.0001 68.67 5.51 33.07  0.0004 41.14 4.68 28.11  0.0003 46.87 5.49 32.95 6 Lack of 

Fit 
  0.08 0.4    0.11 0.57    0.12 0.59 5 Pure 

Error 
   5428.06     5484.26     6849.80 31 Cor. 

Total 
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Radj
2
=0.9826 R

2
=0.9938  Radj

2
=0.9853 R

2
=0.9948  Radj

2
=0.9862 R

2
=0.9951   

C.V. %=1.97 AP
d
=35.37  C.V. %=1.87 AP

d
=38.95  C.V. %=2.10 AP

d
=40.91   

             
a
 Degree of Freedom

 

             b
 Sum of Square 

             c
 Mean Square 

             d
 Adequate precision 
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Table 3. Confirmation experiments for the ions adsorption onto the CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

 

Error (%) 

Dy (III) Tb (III) Nd (III)  Condition  

No.  

Predicted 

 

Observed 

 

Predicted 

 

Observed 

 

Predicted 

 

Observed 

 Initial concentration 

(mg/L) 

Adsorbent dosage (g) Time (min) 

Dy 

(III) 

Tb 

(III) 

Nd 

(III) 

 Dy 

(III) 

Tb 

(III) 

Nd 

(III) 

 

0.61 0.58 1.17 99.44 98.83 96.17 96.73 27.59 94.61 30 30 30 0.1 53 1 

2.11 2.28 1.93 71.31 72.85 66.71 68.27 61.9 63.12 45 45 75 0.125 19 2 

1.66 1.23 0.54 92.17 93.73 89.74 90.86 86.97 87.44 60 60 90 0.2 36 3 

1.54 0.85 1.87 99.05 97.54 97 96.18 95.23 93.48  45 75 45 0.275 53 4 

 

 

Table 4. Kinetic constants for adsorption of Nd (III), Tb (III), and Dy (III) by the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

    Nd (III) Tb (III) Dy (III) 

PFO K1 (1/min)  0.2905 0.290 0.289 

qe (mg/g)  15.07 15.30 15.61 

R
2
  0.9617 0.9585 0.9587 

ꭓ
2
  0.240 0.268 0.279 

 

 

PSO 

K2 (g/mg
 
min) × 10

2  2.99 2.93 2.86 

qe (mg/g)  16.15 16.40 16.74 

h (mg/g min) × 10
-2

  7.79  7.88 8.01 

R
2
  0.9927 0.9933 0.9929 

ꭓ
2
  0.045 0.043 0.048 

 

IPD 

Ki (1/min)  3.88 3.96 4.05 

R
2
  0.8157 0.8225 0.8222 

ꭓ
2
  1.16 1.15 1.20 
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Table 5. Isotherm constants for adsorption of Nd (III), Tb (III), and Dy (III) by the 

CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

    Nd (III) Tb (III) Dy (III) 

 

Langmuir 

 

b (L/mg) 0.78 0.89 1.27 

qm (mg/g) 23.15 24.41 25.24 

R
2
 0.8773 0.9238 0.9125 

 ꭓ
2
 1.62 1.21 1.61 

 

Freundlich 

 

K (mg
1-1/n

 L
1/n

/g) 14.40 15.46 16.49 

n 9 9.26 9.71 

R
2
 0.9879 0.9654 0.9633 

 ꭓ
2
 0.159 0.55 0.675 

 

 

Table 6. Effect of temperature on the adsorption of Nd (III), Tb (III), and Dy (III) at 90 mg/L 

and thermodynamic parameters. 

  Adsorption efficiency (%) 

Temperature (
º
C) 

25 

35 

45 

 

 

 

Nd (III) Tb (III) Dy (III) 

44.31 47.14 49.21 

48.23 50.48 53.45 

52.64 55.99 58.42 

Thermodynamic parameters 

  Nd (III) Tb (III) Dy (III) 

ΔH
º
 (kJ/mol)  13.9 14.76 15.45 

ΔS
º
 (kJ/mol K)  0.039 0.043 0.046 

 Temperature (
º
C)    

 

ΔG
º
 (kJ/mol) 

25 2.022 1.739 1.534 

35 1.686 1.408 1.151 

45 1.274 0.918 0.655 

 

Journal Pre-proof



Jo
urnal P

re-proof

36 
 

 

 

Table 7. Parameters of breakthrough and the values predicted by Thomas and Yan models. 

Yan model  Thomas model  Breakthrough  analysis Metal 

R
2
 a qe  R

2 
qe KTh × 10

4 
 Ce Adsorption efficiency (%) qe 

0.9957 3.74 21.10  0.9945 22.18 5.65  16.10 46.33 22.70 Nd (III) 

0.9962 3.83 22.32  0.9937 23.44 5.52  15.88 47.07 24.00 Tb (III) 

0.9970 4.01 23.92  0.9940 24.96 5.46  15.26 49.11 25.54 Dy (III) 
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Fig. 1. (A) XRD pattern of Ni0.2Zn0.2Fe2.6O4 nanopartciles; Photo of Ni0.2Zn0.2Fe2.6O4 

nanoparticles (B) before drying and (C) in the solution under magnetic field after drying. 

 

Fig. 2. FE-SEM images of (A) Ni0.2Zn0.2Fe2.6O4 and (B) CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

 

Fig. 3. FT-IR spectra of (A) CA, (B) CMC, (C) Ni0.2Zn0.2Fe2.6O4, and (D) 

CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

 

Fig. 4. (A) N2 adsorption−desorption isotherm and (B) pore size distributions of the synthesized 

CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

 

Fig. 5. EDX spectra of (A) Ni0.2Zn0.2Fe2.6O4 and (B) CA/CMC/Ni0.2Zn0.2Fe2.6O4, and (C) 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 after adsorption of the ions. 

 

Fig. 6. TGA curve of CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

 

Fig. 7. Magnetization curves of (A) Ni0.2Zn0.2Fe2.6O4 and (B) CA/CMC/Ni0.2Zn0.2Fe2.6O4; (C) 

Magnetic separation of the ions-loaded adsorbent. 

 

Fig. 8. Effects of pH on the adsorption of the ions. 

 

Fig. 9. Normal probability plots of residuals for the ions adsorption. 
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Fig. 10. Plots of studentized residuals versus predicted for the ions adsorption. 

 

Fig. 11. Plots of studentized residuals versus experimental run number for the ions. 

 

Fig. 12. 3D response surface plots of the ions adsorption onto CA/CMC/Ni0.2Zn0.2Fe2.6O4. 

 

Fig. 13. (A) Effect of ionic strength on the adsorption of Nd (III), Tb (III), and Dy (III), (B) Ln 

Kd versus 1/T for calculation of enthalpy and entropy changes, and (C) Reusability of 

CA/CMC/Ni0.2Zn0.2Fe2.6O4 for adsorption of the ions. 

 

Fig. 14. (A) Experimental data of the column adsorption and (B-D) Modeling of the 

experimental data with Thomas and Yan models. 
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