73 research outputs found

    In vivo Charakterisierung der 4-Cumarat:CoA Ligase-Familie in Arabidopsis thaliana

    Get PDF
    Ziel des Projekts war die Aufschlüsselung der in vivo-Funktionen der drei bekannten A. thaliana 4-Cumarat:CoA Ligasen. In silico Untersuchungen führten zur Entdeckung einer weiteren, wahtscheinlich letzten Isoform, At4CL4. Nach phylogenetischen und genomischen Analysen konnte At4CL4 den Klasse I-4CLs zugeordnet werden und ein Modell wurde vorgeschlagen, das die Evolution der At4CL-Familie beschreibt. At4CL4 wurde heterolog exprimiert und enzymkinetisch als bona fide 4CL charakterisiert mit der besonderen Fähigkeit in vitro Sinapinsäure zu aktivieren. Der At4CL4-katalysierten Aktivierung von Sinpinsäure bzw. Ferulasäure könnte eine Rolle im Stoffwechselweg zu den Sinpat-Derivaten oder Ligninvorstufen zukommen. Auf RT-PCR Ebene wurde die mRNA-Akkumulation der At4CLs untersucht. At4CL4 zeigte ein Muster grundsätzlich ähnlich dem der At4CL1 und der At4CL2 Dieses lässt eine in vivo Funktion der At4CL4 assoziiert mit der Synthese von Ligninvorstufen und anderen phenolischen Verbindungen erwarten. Neben der bereits existierenden At4CL1-Nullmutante wurde zu jedem weiteren Mitglied der At4CL-Familie mindestens eine weitere Linie isoliert, molekularbiologisch und biochemisch charakterisiert. In methanolischen Extrakten löslicher Sekundärmetabolite aus Wurzeln der At4CL1 Mutante wurde Akkumulation einer Verbindung mit einem UV-Spektrum ähnlich dem des Cumarins nachgewiesen In den HPLC-Profilen der At4CL3-Nullmutante wurde die Reduktion, nicht aber vollständiges Fehlen von Flavonoiden nachgewiesen. Die Ausprägung des At4CL3-Nullmutanten-Phänotyps war in verschiedenen Organen und Entwicklungsstufen unterschiedlich stark. Auch konnte keine UV- induzierbare Akkumulation von Flavonoiden in der At4CL3-Nullmutante gezeigt werden. Eine Funktion der At4CL3 kann daher in in der Aktivierung von Flavonoid-Vorstufen in jungen Pflanzen und nach UV-Perzeption bestehen. Um die funktionellen Redundanzen zu überwinden, wurden multiple Nullmutanten der At4CLs mit Mutanten der Gene AtCHS und AtF5H generiert, um weitere strategische Punkte des Metabolitenflusses abzudecken. Morphologische und biochemische Charakterisierung ausgewählter Mutanten zeigte, dass ein homozygoter Defekt von At4CL1 und At4CL2 zum Stagnieren der pflanzlichen Entwicklung im Alter von 5-6 Wochen führte. In HPLC-Profilen konnte hier die spezifische Akkumulation von drei Verbindungen nachgewiesen werden, die vermutlich 4-Cumarat- und Ferulat-Derivate darstellen. Daraus wurde geschlossen, dass die Funktionen von At4CL1 und At4CL2 in der Synthese von Ligninvorstufen und weiteren phenolischen Verbindungen der späten Entwicklungsstadien bestehen

    Metabolic engineering of <i>Synechocystis </i>sp. PCC 6803 for production of the plant diterpenoid manoyl oxide

    Get PDF
    [Image: see text] Forskolin is a high value diterpenoid with a broad range of pharmaceutical applications, naturally found in root bark of the plant Coleus forskohlii. Because of its complex molecular structure, chemical synthesis of forskolin is not commercially attractive. Hence, the labor and resource intensive extraction and purification from C. forskohlii plants remains the current source of the compound. We have engineered the unicellular cyanobacterium Synechocystis sp. PCC 6803 to produce the forskolin precursor 13R-manoyl oxide (13R-MO), paving the way for light driven biotechnological production of this high value compound. In the course of this work, a new series of integrative vectors for use in Synechocystis was developed and used to create stable lines expressing chromosomally integrated CfTPS2 and CfTPS3, the enzymes responsible for the formation of 13R-MO in C. forskohlii. The engineered strains yielded production titers of up to 0.24 mg g(–1) DCW 13R-MO. To increase the yield, 13R-MO producing strains were further engineered by introduction of selected enzymes from C. forskohlii, improving the titer to 0.45 mg g(–1) DCW. This work forms a basis for further development of production of complex plant diterpenoids in cyanobacteria

    Biophysical study of resin acid effects on phospholipid membrane 1 structure and properties

    Get PDF
    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity

    最近の經濟學界

    Get PDF
    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology
    corecore