2,107 research outputs found

    Continuous laser hardening with induction pre-heating

    Full text link
    A novel way of continuous surface hardening of steel bodies by a laser beam is modeled. This heat treatment is supplemented with pre-heating of the hardened parts by a classic inductor in order to reduce the temperature gradients and subsequent mechanical stresses in the processed material. The mathematical model of the process is solved numerically in 3D and the solution respects all important nonlinearities (a saturation curve of the hardened steel and temperature dependences of its physical properties). The methodology is illustrated with a typical example, whose results are presented and discussed

    An Investigation into the Relationship Between Pre-Competition Mood States, Age, Gender and a National Ranking in Artistic Gymnastics

    Get PDF
    This study investigated the relationship between pre-competition mood state factors in gymnastics by gender, age and a national ranking. Participant-gymnasts (total n=116, male n=49, female n=67) completed a Brunel Mood Scale (BRUMS) one day prior to their main competition of the year. Information was also gathered from gymnasts of gender, age and a national ranking. Consistent with theoretical predictions, results confirmed that a number of pre-competition mood states differed by age with both juniors and seniors having a higher level of anger than children (p<.05 respectively). Also, seniors demonstrated higher tension than children (p<.001). However, only anger showed significant differences by gender with male gymnasts demonstrating higher levels of anger than female gymnasts (p<.05), and with international gymnasts registering higher levels of anger compared with second class gymnasts (p<.05). Authors suggest that future research should investigate relationships between the pre-competition mood in other gymnastics-related disciplines and sports, as well as competitive performances

    Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera

    Full text link
    The measurement of photon-number statistics of fields composed of photon pairs, generated in spontaneous parametric down-conversion and detected by an intensified CCD camera is described. Final quantum detection efficiencies, electronic noises, finite numbers of detector pixels, transverse intensity spatial profiles of the detected beams as well as losses of single photons from a pair are taken into account in a developed general theory of photon-number detection. The measured data provided by an iCCD camera with single-photon detection sensitivity are analyzed along the developed theory. Joint signal-idler photon-number distributions are recovered using the reconstruction method based on the principle of maximum likelihood. The range of applicability of the method is discussed. The reconstructed joint signal-idler photon-number distribution is compared with that obtained by a method that uses superposition of signal and noise and minimizes photoelectron entropy. Statistics of the reconstructed fields are identified to be multi-mode Gaussian. Elements of the measured as well as the reconstructed joint signal-idler photon-number distributions violate classical inequalities. Sub-shot-noise correlations in the difference of the signal and idler photon numbers as well as partial suppression of odd elements in the distribution of the sum of signal and idler photon numbers are observed.Comment: 14 pages, 14 figure

    Multiple-photon resolving fiber-loop detector

    Get PDF
    We show first reconstructions of the photon-number distribution obtained with a multi-channel fiber-loop detector. Apart from analyzing the statistics of light pulses this device can serve as a sophisticated postselection device for experiments in quantum optics and quantum information. We quantify its efficiency by means of the Fisher information and compare it to the efficiency of the ideal photodetector.Comment: 5 pages, 6 figure

    Pre-Excitation Studies for Rubidium-Plasma Generation

    Full text link
    The key element in the Proton-Driven-Plasma-Wake-Field-Accelerator (AWAKE) project is the generation of highly uniform plasma from Rubidium vapor. The standard way to achieve full ionization is to use high power laser which can assure the over-barrier-ionization (OBI) along the 10 meters long active region. The Wigner-team in Budapest is investigating an alternative way of uniform plasma generation. The proposed Resonance Enhanced Multi Photon Ionization (REMPI) scheme probably can be realized by much less laser power. In the following the resonant pre-excitations of the Rb atoms are investigated, theoretically and the status report about the preparatory work on the experiment are presented.Comment: 8 pages, 6 figures, submitted to Nucl. Inst. and Meth. in Phys. Res.

    VHMPID: a new detector for the ALICE experiment at LHC

    Full text link
    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference

    Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics

    Full text link
    Tsallis Statistics was used to investigate the non-Boltzmann distribution of particle spectra and their dependence on particle species and beam energy in the relativistic heavy-ion collisions at SPS and RHIC. Produced particles are assumed to acquire radial flow and be of non-extensive statistics at freeze-out. J/psi and the particles containing strangeness were examined separately to study their radial flow and freeze-out. We found that the strange hadrons approach equilibrium quickly from peripheral to central A+A collisions and they tend to decouple earlier from the system than the light hadrons but with the same final radial flow. These results provide an alternative picture of freeze-outs: a thermalized system is produced at partonic phase; the hadronic scattering at later stage is not enough to maintain the system in equilibrium and does not increase the radial flow of the copiously produced light hadrons. The J/psi in Pb+Pb collisions at SPS is consistent with early decoupling and obtains little radial flow. The J/psi spectra at RHIC are also inconsistent with the bulk flow profile.Comment: 12 pages, 4 figures, added several references and some clarifications et
    corecore