37 research outputs found

    A Brief Review of Bone Adaptation to Unloading.

    Get PDF
    Weight-bearing bone is constantly adapting its structure and function to mechanical environments. Loading through routine exercises stimulates bone formation and prevents bone loss, but unloading through bed rest and cast immobilization as well as exposure to weightlessness during spaceflight reduces its mass and strength. In order to elucidate the mechanism underlying unloading-driven bone adaptation, ground-based in vitro and in vivo analyses have been conducted using rotating cell culturing and hindlimb suspension. Focusing on gene expression studies in osteoblasts and hindlimb suspension studies, this minireview introduces our recent understanding on bone homeostasis under weightlessness in space. Most of the existing data indicate that unloading has the opposite effects to loading through common signaling pathways. However, a question remains as to whether any pathway unique to unloading (and not to loading) may exist

    Enhancement of osteoblastogenesis and suppression of osteoclastogenesis by inhibition of de-phosphorylation of eukaryotic translation initiation factor 2 alpha

    Get PDF
    The phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) is activated in response to various stresses such as viral infection, nutrient deprivation, and stress to the endoplasmic reticulum. Severe stress to the endoplasmic reticulum, for instance, induces an apoptotic pathway, while mild stress, on the contrary, leads to a pro-survival pathway. Little has been known about the elaborate role of eIF2α phosphorylation in the development of bone-forming osteoblasts and bone-resorbing osteoclasts. Using salubrinal and guanabenz as inhibitors of the de-phosphorylation of eIF2α, we have recently reported that the phosphorylation of eIF2α significantly alters fates of both osteoblasts and osteoclasts. Based on our recent findings, we review in this research highlight the potential mechanisms of the enhancement of osteoblastogenesis and the suppression of osteoclastogenesis through the elevated level of phosphorylated eIF2α

    Salubrinal acts as a Dusp2 inhibitor and suppresses inflammation in anti-collagen antibody-induced arthritis

    Get PDF
    Dual-specificity phosphatase 2 (Dusp2; also called phosphatase of activated cells 1, PAC1) is highly expressed in activated immune cells. We examined whether a potential inhibitor of Dusp2, salubrinal, prevents inflammatory cytokine expression in immune cells and arthritic responses in a mouse model of anti-collagen antibody-induced arthritis (CAIA). Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, we examined the effects of salubrinal on expression of inflammation linked genes as well as a family of DUSP genes using genome-wide microarrays, qPCR, and RNA interference. We also evaluated the effects of salubrinal on arthritic responses in CAIA mice using clinical and histological scores. The results revealed that salubrinal decreased inflammatory gene expression in macrophages, T lymphocytes, and mast cells. Dusp2 was suppressed by salubrinal in LPS-activated macrophages as well as PMA/ionomycin-activated T lymphocytes and mast cells. Furthermore, a partial silencing of Dusp2 downregulated IL1β and Cox2, and the inflammatory signs of CAIA mice were significantly suppressed by salubrinal. Collectively, this study presents a novel therapeutic possibility of salubrinal for inflammatory arthritis such as RA through inhibition of Dusp2

    Predicting and validating the pathway of Wnt3a-driven suppression of osteoclastogenesis

    Get PDF
    Wnt signaling plays a major role in bone homeostasis and mechanotransduction, but its role and regulatory mechanism in osteoclast development are not fully understood. Through genome-wide in silico analysis, we examined Wnt3a-driven regulation of osteoclast development. Mouse bone marrow-derived cells were incubated with RANKL in the presence and absence of Wnt3a. Using microarray mRNA expression data, we conducted principal component analysis and predicted transcription factor binding sites (TFBSs) that were potentially involved in the responses to RANKL and Wnt3a. The principal component analysis predicted potential Wnt3a responsive regulators that would reverse osteoclast development, and a TFBS prediction algorithm indicated that the AP1 binding site would be linked to Wnt3a-driven suppression. Since c-Fos was upregulated by RANKL and downregulated by Wnt3a in a dose-dependent manner, we examined its role using RNA interference. The partial silencing of c-Fos suppressed RANKL-driven osteoclastogenesis by downregulating NFATc1, a master transcription factor of osteoclast development. Although the involvement of c-Myc was predicted and partially silencing c-Myc slightly reduced the level of TRAP, c-Myc silencing did not alter the expression of NFATc1. Collectively, the presented systems-biology approach demonstrates that Wnt3a attenuates RANKL-driven osteoclastogenesis by blocking c-Fos expression and suggests that mechanotransduction of bone alters the development of not only osteoblasts but also osteoclasts through Wnt signaling

    Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone.

    Get PDF
    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both “anabolic responses of mechanical loading” and “BMP-mediated osteogenic signaling”? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated receptor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells supported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation

    Guanabenz Downregulates Inflammatory Responses via eIF2α Dependent and Independent Signaling

    Get PDF
    Integrated stress responses (ISR) may lead to cell death and tissue degeneration via eukaryotic translation initiation factor 2 α (eIF2α)-mediated signaling. Alleviating ISR by modulating eIF2α phosphorylation can reduce the symptoms associated with various diseases. Guanabenz is known to elevate the phosphorylation level of eIF2α and reduce pro-inflammatory responses. However, the mechanism of its action is not well understood. In this study, we investigated the signaling pathway through which guanabenz induces anti-inflammatory effects in immune cells, in particular macrophages. Genome-wide mRNA profiling followed by principal component analysis predicted that colony stimulating factor 2 (Csf2, or GM-CSF as granulocyte macrophage colony stimulating factor) is involved in the responses to guanabenz. A partial silencing of Csf2 or eIF2α by RNA interference revealed that Interleukin-6 (IL6), Csf2, and Cyclooxygenase-2 (Cox2) are downregulated by guanabenz-driven phosphorylation of eIF2α. Although expression of IL1β and Tumor Necrosis Factor-α (TNFα) was suppressed by guanabenz, their downregulation was not directly mediated by eIF2α signaling. Collectively, the result herein indicates that anti-inflammatory effects by guanabenz are mediated by not only eIF2α-dependent but also eIF2α-independent signaling

    eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice

    Get PDF
    Bone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase

    Suppression of Osteoclastogenesis via Upregulation of Zfyve21 and Ddit4 by Salubrinal and Guanabenz

    Get PDF
    Salubrinal and guanabenz are two known inhibitors of de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), and they suppress osteoclastogenesis through downregulating nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a master molecule of osteoclastogenesis. The mechanism of NFATc1 suppression is not well understood. Using genome-wide microarray analysis, we investigated molecular regulators of osteoclastogenesis, in particular, in response to salubrinal and guanabenz. We identified two sets of genes: a set of genes that were upregulated by receptor activator of nuclear factor kappa-B ligand (RANKL) and downregulated by salubrinal and guanabenz; and the other set of genes that were downregulated by RANKL and upregulated by salubrinal and guanabenz. The microarray and qPCR result revealed that a zinc finger protein, FYVE domain containing 21 (Zfyve21), as well as DNA-damage-inducible transcript 4 (Ddit4), were suppressed by RANKL and upregulated by salubrinal and guanabenz. A partial silencing of Zfyve21 or Ddit4 attenuated salubrinal- and guanabenz-driven suppression of NFATc1. Collectively, this study demonstrates that Zfyve21 and Ddit4 are two inhibitors of osteoclastogenesis. We expect that they may potentially serve as novel targets for preventing bone loss from skeletal diseases such as osteoporosis

    MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus

    Get PDF
    Mesenchymal stem cell transplantation (MSCT) has been used to treat human diseases, but the detailed mechanisms underlying its success are not fully understood. Here we show that MSCT rescues bone marrow MSC (BMMSC) function and ameliorates osteopenia in Fas-deficient-MRL/lpr mice. Mechanistically, we show that Fas deficiency causes failure of miR-29b release, thereby elevating intracellular miR-29b levels, and downregulates DNA methyltransferase 1 (Dnmt1) expression in MRL/lpr BMMSCs. This results in hypomethylation of the Notch1 promoter and activation of Notch signaling, in turn leading to impaired osteogenic differentiation. Furthermore, we show that exosomes, secreted due to MSCT, transfer Fas to recipient MRL/lpr BMMSCs to reduce intracellular levels of miR-29b, which results in recovery of Dnmt1-mediated Notch1 promoter hypomethylation and thereby improves MRL/lpr BMMSC function. Collectively our findings unravel the means by which MSCT rescues MRL/lpr BMMSC function through reuse of donor exosome-provided Fas to regulate the miR-29b/Dnmt1/Notch epigenetic cascade

    Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mic

    Get PDF
    Salubrinal is an agent that reduces the stress to the endoplasmic reticulum by inhibiting de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). We and others have previously shown that the elevated phosphorylation of eIF2α stimulates bone formation and attenuates bone resorption. In this study, we applied salubrinal to a mouse model of osteogenesis imperfecta (Oim), and examined whether it would improve Oim's mechanical property. We conducted in vitro experiments using RAW264.7 pre-osteoclasts and bone marrow derived cells (BMDCs), and performed in vivo administration of salubrinal to Oim (+/−) mice. The animal study included two control groups (wildtype and Oim placebo). The result revealed that salubrinal decreased expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and suppressed osteoclast maturation, and it stimulated mineralization of mesenchymal stem cells from BMDCs. Furthermore, daily injection of salubrinal at 2 mg/kg for 2 months made stiffness (N/mm) and elastic module (GPa) of the femur undistinguishable to those of the wildtype control. Collectively, this study supported salubrinal's beneficial role to Oim's femora. Unlike bisphosphonates, salubrinal stimulates bone formation. For juvenile OI patients who may favor strengthening bone without inactivating bone remodeling, salubrinal may present a novel therapeutic option
    corecore