14 research outputs found

    Romidepsin Promotes Osteogenic and Adipocytic Differentiation of Human Mesenchymal Stem Cells through Inhibition of Histondeacetylase Activity

    Get PDF
    Bone marrow mesenchymal stem cells (BMSCs) are adult multipotent stem cells that can differentiate into mesodermal lineage cells, including adipocytes and osteoblasts. However, the epigenetic mechanisms governing the lineage-specific commitment of BMSCs into adipocytes or osteoblasts are under investigation. Herein, we investigated the epigenetic effect of romidepsin, a small molecule dual inhibitor targeting HDAC1 and HDAC2 identified through an epigenetic library functional screen. BMSCs exposed to romidepsin (5 nM) exhibited enhanced adipocytic and osteoblastic differentiation. Global gene expression and signaling pathway analyses of differentially expressed genes revealed a strong enrichment of genes involved in adipogenesis and osteogenesis in romidepsin-treated BMSCs during induction into adipocytes or osteoblasts, respectively. Pharmacological inhibition of FAK signaling during adipogenesis or inhibition of FAK or TGFβ signaling during osteogenesis diminished the biological effects of romidepsin on BMSCs. The results of chromatin immunoprecipitation combined with quantitative polymerase chain reaction indicated a significant increase in H3K9Ac epigenetic markers in the promoter regions of peroxisome proliferator-activated receptor gamma (PPARγ) and KLF15 (related to adipogenesis) or SP7 (Osterix) and alkaline phosphatase (ALP) (related to osteogenesis) in romidepsin-treated BMSCs. Our data indicated that romidepsin is a novel in vitro modulator of adipocytic and osteoblastic differentiation of BMSCs

    MicroRNA-320 suppresses colorectal cancer by targeting SOX4, FOXM1, and FOXQ1

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer causing high mortality rates world-wide. Delineating the molecular mechanisms leading to CRC development and progression, including the role of microRNAs (miRNAs), are currently being unravelled at a rapid rate. Here, we report frequent downregulation of the microRNA miR-320 family in primary CRC tissues and cell lines. Lentiviral-mediated re-expression of miR-320c (representative member of the miR-320 family) inhibited HCT116 CRC growth and migration in vitro, sensitized CRC cells to 5-Fluorouracil (5-FU), and inhibited tumor formation in SCID mice. Global gene expression analysis in CRC cells over-expressing miR-320c, combined with in silico prediction identified 84 clinically-relevant potential gene targets for miR-320 in CRC. Using a series of biochemical assays and functional validation, SOX4, FOXM1, and FOXQ1 were validated as novel gene targets for the miR-320 family. Inverse correlation between the expression of miR-320 members with SOX4, FOXM1, and FOXQ1 was observed in primary CRC patients' specimens, suggesting that these genes are likely bona fide targets for the miR-320 family. Interestingly, interrogation of the expression levels of this gene panel (SOX4, FOXM1, and FOXQ1) in The Cancer Genome Atlas (TCGA) colorectal cancer data set (319 patients) revealed significantly poor disease-free survival in patients with elevated expression of this gene panel (P-Value: 0.0058). Collectively, our data revealed a novel role for the miR-320/SOX4/FOXM1/FOXQ1 axes in promoting CRC development and progression and suggest targeting those networks as potential therapeutic strategy for CRC

    Enhanced efficacy of 5-fluorouracil in combination with a dual histone deacetylase and phosphatidylinositide 3-kinase inhibitor (CUDC-907) in colorectal cancer cells

    No full text
    Background/Aims: 5-Fluorouracil (5-FU) is widely used in the treatment of patients with colorectal cancer (CRC). However, the efficacy of 5-FU as a single agent is limited, with multiple undesired side effects. Therefore, the aim of the current study was to assess the efficacy of CUDC-907 (a dual inhibitor of histone deacetylase and phosphatidylinositide 3-kinase) in combination with 5-FU against CRC cells. Materials and Methods: Cell viability was determined using AlamarBlue and colony formation assays. Acridine orange/ethidium bromide staining and flow cytometry were used to measure apoptotic and necrotic events, as well as cell cycle progression. Immunoblotting was used to assess acetylation of histone H3 and phosphorylation of AKT. Results: Our data revealed enhanced toxicity of CUDC-907 against HCT116, RKO, COLO-205, and HT-29 CRC cells when combined with 5-FU. Similarly, the colony formation capability of HCT116 cells was suppressed by the combination treatment. Cells treated with CUDC-907 and 5-FU underwent apoptosis and necrosis, and exhibited increased polyploidy. Furthermore, CRC cells treated with CUDC-907 exhibited a higher degree of histone H3 lysine 9 acetylation (H3K9ac) and reduced AKT phosphorylation (Ser473).Conclusion: Our data revealed, for the first time, the enhanced inhibitory effect of CUDC-907 against CRC cells when combined with 5-FU, supporting the application of this combination as a potential therapeutic strategy in CRC treatment

    MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    Get PDF
    Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related protein 3 (LRP3) in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during the osteogenic induction of the imCL1 clone. Data from functional and gene expression assays demonstrated the role of LRP3 as a molecular switch promoting hBMSC lineage differentiation into osteoblasts and inhibiting differentiation into adipocytes. Interestingly, microRNA (miRNA) expression profiling identified miR-4739 as the most under-represented miRNA (−36.11 fold) in imCL1 compared to imCL2. The TargetScan prediction algorithm, combined with functional and biochemical assays, identified LRP3 mRNA as a novel target of miR-4739, with a single potential binding site for miR-4739 located in the LRP3 3′ UTR. Regulation of LRP3 expression by miR-4739 was subsequently confirmed by qRT-PCR, western blotting, and luciferase assays. Over-expression of miR-4739 mimicked the effects of LRP3 knockdown on promoting adipogenic and suppressing osteogenic differentiation of hBMSCs. Hence, we report for the first time a novel biological role for the LRP3/hsa-miR-4739 axis in balancing osteogenic and adipocytic differentiation of hBMSCs. Our data support the potential utilization of miRNA-based therapies in regenerative medicine
    corecore