30 research outputs found

    Genetic mutations and non‐coding RNA‐based epigenetic alterations mediating the Warburg effect in colorectal carcinogenesis

    Get PDF
    Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma‐carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer‐related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive—a phenomenon known as the “Warburg effect”. Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non‐coding RNA (ncRNA)‐based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA‐based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.</p

    SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene

    Get PDF
    Numerous researches have focused on the genetic variations affecting SARS-CoV-2 infection, whereas the epigenetic effects are inadequately described. In this report, for the first time, we have identified potential candidate genes that might be regulated via SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, in silico transcriptomic data of COVID-19 lung autopsies were used to identify the top differentially expressed genes containing CpG Islands in their promoter region. Similar gene regulations were also observed in an in vitro model of SARS-CoV-2 infected lung epithelial cells (NHBE and A549). SARS-CoV-2 infection significantly decreased the levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in lung epithelial cells. Out of 14 candidate genes identified, the expression of 12 genes was upregulated suggesting promoter hypomethylation, while only two genes were downregulated suggesting promoter hypermethylation in COVID-19. Among those 12 upregulated genes, only HSPA1L and ULBP2 were found to be upregulated in AZA-treated lung epithelial cells and immune cells, suggesting their epigenetic regulation. To confirm the hypomethylation of these two genes during SARS-CoV-2 infection, their promoter methylation and mRNA expression levels were determined in the genomic DNA/RNA obtained from whole blood samples of asymptomatic, severe COVID-19 patients and equally matched healthy controls. The methylation level of HSPA1L was significantly decreased and the mRNA expression was increased in both asymptomatic and severe COVID-19 blood samples suggesting its epigenetic regulation by SARS-CoV-2 infection. Functionally, HSPA1L is known to facilitate host viral replication and has been proposed as a potential target for antiviral prophylaxis and treatment.</p

    Luteolin inhibits proliferation, triggers apoptosis and modulates Akt/mTOR and MAP kinase pathways in HeLa cells

    Get PDF
    Flavonoids, a subclass of polyphenols, have been shown to be effective against several types of cancer, by decreasing proliferation and inducing apoptosis. Therefore, the aim of the present study was to assess the anti-carcinogenic potential of luteolin on HeLa human cervical cancer cells, through the use of a cell viability assay, DNA fragmentation assay, mitochondrial membrane potential assay, cell cycle analysis using Annexin/PI staining and flow cytometry, gene expression analysis and a protein profiling array. Luteolin treatment exhibited cytotoxicity towards HeLa cells in a dose- and time-dependent manner, and its anti-proliferative properties were confirmed by accumulation of luteolin-treated cells in sub-G1 phases. Cytotoxicity induced by luteolin treatment resulted in apoptosis, which was mediated through depolarization of the mitochondrial membrane potential and DNA fragmentation. Furthermore, luteolin treatment increased the expression of various proapoptotic genes, including APAF1, BAX, BAD, BID, BOK, BAK1, TRADD, FADD, FAS, and Caspases 3 and 9, whereas the expression of anti-apoptotic genes, including NAIP, MCL-1 and BCL-2, was decreased. Cell cycle regulatory genes, including CCND1, 2 and 3, CCNE2, CDKN1A, CDKN2B, CDK4 and CDK2, were decreased following treatment. Expression of TRAILR2/DR5, TRAILR1/DR4, Fas/TNFRSF6/CD95 and TNFR1/TNFRSF1A, as well as pro-apoptotic proteins, including BAD, BAX and Cytochrome C were consistently increased, and the expression of antiapoptotic proteins, HIF1α, BCL-X, MCL1 and BCL2, were found to be decreased following treatment. Expression of AKT1 and 2, ELK1, PIK3C2A, PIK3C2B, MAPK14, MAP3K5, MAPK3 and MAPK1 was significantly decreased at the transcriptional level. Expression of GSK3b (p-ser9), PRAS 40 (p-Ther246), BAD (p-ser112), PTEN (p-ser380), AKT (p-ser473), ERK2 (p-Y185/Y187), RISK2 (p-ser386), P70S6k (p-Thr421/ser424), PDK1(p-ser241), ERK1 (p-T202/Y204) and MTOR (p-ser2448) was downregulated and expression of P53 (p-ser241) and P27(p-Thr198) was upregulated by luteolin in a dose-dependent manner, indicating its anti-proliferative and apoptosis enabling properties, and this may have been mediated via inhibition of the AKT and the MAPK pathways. © 2021 Spandidos Publications. All rights reserved

    PRMT5 Mediated HIF1α Signaling and Ras-Related Nuclear Protein as Promising Biomarker in Hepatocellular Carcinoma

    Get PDF
    Protein arginine N-methyltransferase 5 (PRMT5) has been identified as a potential therapeutic target for various cancer types. However, its role in regulating the hepatocellular carcinoma (HCC) transcriptome remains poorly understood. In this study, publicly available databases were employed to investigate PRMT5 expression, its correlation with overall survival, targeted pathways, and genes of interest in HCC. Additionally, we utilized in-house generated NGS data to explore PRMT5 expression in dysplastic nodules compared to hepatocellular carcinoma. Our findings revealed that PRMT5 is significantly overexpressed in HCC compared to normal liver, and elevated expression correlates with poor overall survival. To gain insights into the mechanism driving PRMT5 overexpression in HCC, we analyzed promoter CpG islands and methylation status in HCC compared to normal tissues. Pathway analysis of PRMT5 knockdown in the HCC cells revealed a connection between PRMT5 expression and genes related to the HIF1α pathway. Additionally, by filtering PRMT5-correlated genes within the HIF1α pathway and selecting up/downregulated genes in HCC patients, we identified Ras-related nuclear protein (RAN) as a target associated with overall survival. For the first time, we report that PRMT5 is implicated in the regulation of HIF1A and RAN genes, suggesting the potential prognostic utility of PRMT5 in HCC.</p

    Silencing of the FTO gene inhibits insulin secretion : An in vitro study using GRINCH cells

    Get PDF
    Expression of fat mass and obesity-associated gene (FTO) and ADP-ribosylation factor-like 15 (ARL15) in human islets is inversely correlated with HbA(1c). However, their impact on insulin secretion is still ambiguous. Here in, we investigated the role of FTO and ARL15 using GRINCH (Glucose-Responsive Insulin-secreting C-peptide-modified Human proinsulin) clonal rat beta-cells. GRINCH cells have inserted GFP into the human C-peptide insulin gene. Hence, secreted CpepGFP served to monitor insulin secretion. mRNA silencing of FTO in GRINCH cells showed a significant reduction in glucose but not depolarization-stimulated insulin secretion, whereas ARL15 silencing had no effect. A significant down-regulation of insulin mRNA was observed in FTO knockdown cells. Type-2 Diabetic islets revealed a reduced expression of FTO mRNA. In conclusion, our data suggest that fluorescent CpepGFP released from GRINCH cells may serve as a convenient marker for insulin secretion. Silencing of FTO expression, but not ARL15, inhibits insulin secretion by affecting metabolic signaling.Peer reviewe

    Exploring the effect of estrogen on Candida albicans hyphal cell wall glycans and ergosterol synthesis

    Get PDF
    Increased levels of 17-ÎČ estradiol (E2) due to pregnancy in young women or to hormonal replacement therapy in postmenopausal women have long been associated with an increased risk of yeast infections. Nevertheless, the effect underlying the role of E2 in Candida albicans infections is not well understood. To address this issue, functional, transcriptomic, and metabolomic analyses were performed on C. albicans cells subjected to temperature and serum induction in the presence or absence of E2. Increased filament formation was observed in E2 treated cells. Surprisingly, cells treated with a combination of E2 and serum showed decreased filament formation. Furthermore, the transcriptomic analysis revealed that serum and E2 treatment is associated with downregulated expression of genes involved in filamentation, including HWP1, ECE1, IHD1, MEP1, SOD5, and ALS3, in comparison with cells treated with serum or estrogen alone. Moreover, glucose transporter genes HGT20 and GCV2 were downregulated in cells receiving both serum and E2. Functional pathway enrichment analysis of the differentially expressed genes (DEGs) suggested major involvement of E2 signaling in several metabolic pathways and the biosynthesis of secondary metabolites. The metabolomic analysis determined differential secretion of 36 metabolites based on the different treatments’ conditions, including structural carbohydrates and fatty acids important for hyphal cell wall formation such as arabinonic acid, organicsugar acids, oleic acid, octadecanoic acid, 2-keto-D-gluconic acid, palmitic acid, and steriacstearic acid with an intriguing negative correlation between D-turanose and ergosterol under E2 treatment. In conclusion, these findings suggest that E2 signaling impacts the expression of several genes and the secretion of several metabolites that help regulate C. albicans morphogenesis and virulence

    Epsilometer Test-Based Determination of Susceptibility of Clinically Important Candida Isolates to Conventional Antifungal Agents

    Get PDF
    One hundred thirty yeast clinical isolates comprised of 81 C. albicans , 22 C. tropicalis , 11 C. parapsilosis , 9 C. glabrata and 7 C. krusei were evaluated for antifungal susceptibility using the E-test. MIC, MIC50 and MIC90 of amphotericin B (AMB), flucytosine (FC), fluconazole (FL), itraconazole (IT) and voriconazole (VOR) were determined at 24 and 48 h of incubation and compared with data obtained by the broth microdilution method. MIC and MIC90 determined at 24 h for C. albicans were: AMB256, 64, IT 0.012-2.0, 0.19 and VOR 0.008-0.750, 0.047. Those for C. glabrata were: AMB 0.016-4.0, 1.25, FC256.0, 64.0, IT 0.003-4.0, 1.0 and VOR 0.047-2, 0.38. Overall, Candida species remain uniformly susceptible to AMB and FL; this not withstanding the finding that C. glabrata and C. krusei showed significant resistance to FL. MICs after 48 h of incubation were higher than those determined at 24 h of incubation; increased resistance rates and enhanced endpoint trailing particularly with FL and IT were also evident. Overall agreement between the MICs obtained by the E-test and broth microdilution methods was >=86% within Ăƒâ€šĂ‚Â±2 dilution for AMB, FL and VOR for C. albicans , C. tropicalis and C. parapsilosis and 67% for C. glabrata and 52% for C. krusei for FL. Based on the 24 h MICs determinations, resistant strains in Candida species from Jordan were encountered at a range of 8-22% against azole antifungals tested. These results suggest that the E-test is simple, inexpensive, easy both to read and interpret and has a good correlation to the CLSI microdilution test and can be conveniently incorporated and performed in a hospital-based clinical laboratory
    corecore