382 research outputs found

    Cognitive processing of spatial relations in Euclidean diagrams

    Get PDF
    The cognitive processing of spatial relations in Euclidean diagrams is central to the diagram-based geometric practice of Euclid's Elements. In this study, we investigate this processing through two dichotomies among spatial relations—metric vs topological and exact vs co-exact—introduced by Manders in his seminal epistemological analysis of Euclid's geometric practice. To this end, we carried out a two-part experiment where participants were asked to judge spatial relations in Euclidean diagrams in a visual half field task design. In the first part, we tested whether the processing of metric vs topological relations yielded the same hemispheric specialization as the processing of coordinate vs categorical relations. In the second part, we investigated the specific performance patterns for the processing of five pairs of exact/co-exact relations, where stimuli for the co-exact relations were divided into three categories depending on their distance from the exact case. Regarding the processing of metric vs topological relations, hemispheric differences were found for only a few of the stimuli used, which may indicate that other processing mechanisms might be at play. Regarding the processing of exact vs co-exact relations, results show that the level of agreement among participants in judging co-exact relations decreases with the distance from the exact case, and this for the five pairs of exact/co-exact relations tested. The philosophical implications of these empirical findings for the epistemological analysis of Euclid's diagram-based geometric practice are spelled out and discussed

    Tumor Necrosis Factor–Alpha Gene Expression in Human Whole Blood

    Full text link
    Tumor necrosis factor‐alpha (TNF) is recognized as a principal mediator of a variety of pathophysiologic and immunologic events. Lipopolysaccharide (LPS) challenge, either in vitro or in vivo, results in significant TNF production. In this study we present data demonstrating LPS‐induced TNF mRNA expression and bioactivity using an in vitro tissue system of whole blood (WB). The kinetics of LPS‐induced TNF production by WB was significantly accelerated as compared to isolated cultured peripheral blood monocytes (PBM). At post‐LPS challenge, plasma from WB demonstrated a rapid rise in TNF bioactivity, peaking by 4 hr (1,021 units/ml/106 cells), plateauing between 4 and 8 hr, and then decreasing over the next 16 hr. In contrast, the highest measured TNF bioactivity from PBM did not occur until the 24‐hr time‐point (175 units/ml/106 cells). Whole blood buffy‐coat TNF mRNA was assessed by Northern blot analysis, and demonstrated significant TNF mRNA accumulation at 1 hr and a peak 2 hr post‐LPS challenge. By 8 hr TNF mRNA was undetectable. Concomitant administration of LPS with either prostaglandin E2 (10‐6M) or Dexamethasone (10‐6M) resulted in significant suppression of LPS‐induced TNF production. This data supports WB as a useful in vitro medium for the molecular and cellular analyis of TNF. As specialized connective tissue, WB may provide an important environment to study the pharmacologic manipulation of TNF mRNA and bioactivity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141678/1/jlb0366.pd

    The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction

    Get PDF
    The Cucumber mosaic virus (CMV) 2b protein is a counter-defense factor and symptom determinant. Conserved domains in the 2b protein sequence were mutated in the 2b gene of strain Fny-CMV. The effects of these mutations were assessed by infection of Nicotiana tabacum, N. benthamiana, and Arabidopsis thaliana (ecotype Col-0) with mutant viruses and by expression of mutant 2b transgenes in A. thaliana. We confirmed that two nuclear localization signals were required for symptom induction and found that the N-terminal domain was essential for symptom induction. The C-terminal domain and two serine residues within a putative phosphorylation domain modulated symptom severity. Further infection studies were conducted using Fny-CMVΔ2b, a mutant that cannot express the 2b protein and that induces no symptoms in N. tabacum, N. benthamiana, or A. thaliana ecotype Col-0. Surprisingly, in plants of A. thaliana ecotype C24, Fny-CMVΔ2b induced severe symptoms similar to those induced by the wild-type virus. However, C24 plants infected with the mutant virus recovered from disease while those infected with the wild-type virus did not. Expression of 2b transgenes from either Fny-CMV or from LS-CMV (a mild strain) in Col-0 plants enhanced systemic movement of Fny-CMVΔ2b and permitted symptom induction by Fny-CMVΔ2b. Taken together, the results indicate that the 2b protein itself is an important symptom determinant in certain hosts. However, they also suggest that the protein may somehow synergize symptom induction by other CMV-encoded factors

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure

    Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates Microglia Density and Distribution, but Not Microglia Differentiation In Vivo

    Get PDF
    Microglia are brain-resident macrophages with trophic and phagocytic functions. Dominant loss-of-function mutations in a key microglia regulator, colony-stimulating factor 1 receptor (CSF1R), cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a progressive white matter disorder. Because it remains unclear precisely how CSF1R mutations affect microglia, we generated an allelic series of csf1r mutants in zebrafish to identify csf1r-dependent microglia changes. We found that csf1r mutations led to aberrant microglia density and distribution and regional loss of microglia. The remaining microglia still had a microglia-specific gene expression signature, indicating that they had differentiated normally. Strikingly, we also observed lower microglia numbers and widespread microglia depletion in postmortem brain tissue of ALSP patients. Both in zebrafish and in human disease, local microglia loss also presented in regions without obvious pathology. Together, this implies that CSF1R mainly regulates microglia density and that early loss of microglia may contribute to ALSP pathogenesis. Oosterhof et al. show that colony-stimulating factor 1 receptor (CSF1R) primarily regulates microglia density and not their normal differentiation. In addition, they find widespread depletion of microglia in CSF1R-haploinsufficient zebrafish and leukodystrophy patients, also in the absence of pathology, indicating that microglia depletion may contribute to loss of white matter

    Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure

    Get PDF
    Porous materials with engineered stretching-dominated lattice designs, which offer attractive mechanical properties with ultra-light weight and large surface area for wide-ranging applications, have recently achieved near-ideal linear scaling between stiffness and density. Here, rather than optimizing the microlattice topology, we explore a different approach to strengthen low-density structural materials by designing tube-in-tube beam structures. We develop a process to transform fully dense, three-dimensional printed polymeric beams into graphitic carbon hollow tube-in-tube sandwich morphologies, where, similar to grass stems, the inner and outer tubes are connected through a network of struts. Compression tests and computational modelling show that this change in beam morphology dramatically slows down the decrease in stiffness with decreasing density. In situ pillar compression experiments further demonstrate large deformation recovery after 30-50% compression and high specific damping merit index. Our strutted tube-in-tube design opens up the space and realizes highly desirable high modulus-low density and high modulus-high damping material structures

    Exploring quantitative group-wise differentiation of Alzheimer's disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity measures at multiple time points

    Get PDF
    Objectives This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer’s disease (AD) and behavioural variant frontotemporal dementia (bvFTD). Methods Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3 T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared. Results Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD. Conclusions This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD

    Clinical leadership through commissioning: Does it work in practice?

    Get PDF
    In tune with much international practice, the English National Health Service has been striving to transform health care provision to make it more affordable in the face of rising demand. At the heart of a set of recent radical reforms has been the launch of ‘clinical commissioning’ using the vehicle of local groups of General Practitioners (GPs). This devolves a large portion of the total healthcare budget to these groups. National government policy statements make clear that the expectation is that the groups will ‘transform’ the organization and provision of health services. In this article we draw upon interviews, observations and analysis of internal documents to make an assessment of the extent to which clinical leaders have seized the opportunity presented by the creation of these groups to attempt transformative service redesign
    corecore