311 research outputs found
Effect of culling on individual badger (Meles meles) behaviour: potential implications for bovine tuberculosis transmission
1. Culling wildlife as a form of disease management can have unexpected and sometimes counterproductive outcomes. In the UK, badgers (Meles meles) are culled in efforts to reduce badger-to-cattle transmission of Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). However, culling has previously been associated with both increased and decreased incidence of M. bovis infection in cattle. 2. The adverse effects of culling have been linked to cull-induced changes in badger ranging, but such changes are not well documented at the individual level. Using GPS-collars, we characterised individual badger behaviour within an area subjected to widespread industry-led culling, comparing it with the same area before culling and with three unculled areas. 3. Culling was associated with a 61% increase (95% CI 27-103%) in monthly home range size, a 39% increase (95% CI 28-51%) in nightly maximum distance from the sett, and a 17% increase (95% CI 11-24%) in displacement between successive GPS-collar locations recorded at 20-minute intervals. Despite travelling further, we found a 91.2 minute (95% CI 67.1-115.3 minute) reduction in the nightly activity time of individual badgers associated with culling. These changes became apparent while culls were ongoing and persisted after culling ended. 4. Expanded ranging in culled areas was associated with individual badgers visiting 45% (95% CI 15-80%) more fields each month, suggesting that surviving individuals had the opportunity to contact more cattle. Moreover, surviving badgers showed a 19.9-fold increase (95% CI 10.8-36.4 increase) in the odds of trespassing into neighbouring group territories, increasing opportunities for intergroup contact. 5. Synthesis and Applications: Badger culling was associated with behavioural changes among surviving badgers which potentially increased opportunities for both badger-to-badger and badger-to-cattle transmission of M. bovis. Furthermore, by reducing the time badgers spent active, culling may have reduced badgers’ accessibility to shooters, potentially undermining subsequent population control efforts. Our results specifically illustrate the challenges posed by badger behaviour to cull-based TB control strategies and furthermore, they highlight the negative impacts culling can have on integrated disease control strategies
Seasonality of Social Behaviour Among Immature Belugas (Delphinapterus leucas) in Managed Care
Belugas ( Delphinapterus leucas ) in managed care have been reported to show seasonal variation in socio-sexual behaviour, hormone levels and respiration rates; however, little is known about the social interactions of wild belugas when they are not in summer, near-shore congregations. To better understand if belugas show seasonal variation in social interactions, this study recorded the behaviour of 10 belugas (five females, five males, ranging from birth to 10 years of age) housed in managed care. Social interactions typically peaked in the summer months but persisted at very low levels during the rest of the year. Sea - sonal variation was most dramatic for socio-sexual behaviour but was generally mirrored in pattern by agonistic and affiliative interactions. Subjects closer to maturity displayed more seasonal variation than younger subjects, and males displayed more seasonal variation compared to females. The peak in social interactions found in this study aligns rather closely with wild belugas’ sum - mer, near-shore congregations, where belugas have increased opportunities for socializing. Although belugas in managed care do not experience a seasonal change in habitat, they do show seasonal changes in social behaviour, which are likely driven by seasonal fluctuations in hormone levels. It is therefore expected that wild beluga populations would show similar behavioural pat - terns if they were observed throughout the remainder of the year. This research has applications for belugas in managed care and may provide a framework for understanding the social behaviour of wild belugas
The Goldilocks Principle: Balancing Familiarity and Novelty in the Selection of Play Partners in Groups of Juvenile Male Rats
Like many mammals, rats frequently engage in play fighting as juveniles, an activity that influences the development of socio-cognitive skills. Most studies that assess play are based on staged dyadic encounters, implying that some average quantity and quality of play are sufficient to produce these developmental effects. However, there are individual differences, with some rats not only preferring to play more, but also to have more physical contact than others. Given that rats have individual differences in play, it raises the possibility that rats might express these preferences when playing in groups. To determine whether rats form partner preferences, trials were conducted in which a focal rat was given the opportunity to play with three partners of varying familiarity. One partner was a cage mate, another was housed on the other side of a transparent and perforated divider and so familiar, but not a prior play partner, and the third was a stranger from another cage. A total of 36 focal rats, between 30-36 days of age, were tested and video recorded in 20-minute trials following 2.5 h of social isolation. Focal rats expressed a preference for neighbors over both strangers and cage mates, indicating that balancing between familiarity and novelty influences social play partner preferences. Mechanisms by which this preference might have been established, such as dominance relationships, weight differences, and congruency of play style, were investigated, but none were correlated with the preferences expressed. This group dynamics perspective provides a novel approach to studying play, and more generally, provides insights into social exploration and decision-making
Use of farm buildings by wild badgers: implications for the transmission of bovine tuberculosis
Diseases transmitted from wildlife to livestock or people may be managed more effectively if it is known where transmission occurs. In Britain, farm buildings have been proposed as important sites of Mycobacterium bovis transmission between wild badgers (Meles meles) and cattle, contributing to the maintenance of bovine tuberculosis (TB). Farmers are therefore advised to exclude badgers from buildings.
We used GPS-collars and remote cameras to characterise badgers’ use of farm buildings at four TB-affected sites in southwestern Britain. Across 54 GPS-collared badgers, 99.8% of locations fell ≥3m from farm buildings. Remote cameras deployed in feed stores recorded just 12 nights with badger visits among 3,134 store-nights of monitoring. GPS-collared badgers used space near farm buildings less than expected based on availability, significantly preferring land ≥100m from buildings.
There was no positive association between badgers’ use of farm buildings and the infection status of either badgers or cattle. Six GPS-collared badgers which regularly visited farm buildings all tested negative for M. bovis. Overall, test-positive badgers spent less time close to farm buildings than did test-negative animals. Badger visits to farm buildings were more frequent where badger population densities were high.
Our findings suggest that, while buildings may offer important opportunities for M. bovis transmission between badgers and cattle, building use by badgers is not a prerequisite for such transmission. Identifying ways to minimise infectious contact between badgers and cattle away from buildings is therefore a management priority
Play fighting revisited: its design features and how they shape our understanding of its mechanisms and functions
Play fighting has been one of the most intensely studied forms of play and so has provided some of our deepest insights into the understanding of play in general. As the label implies, this behavior resembles serious fighting, in that the animals compete for an advantage over one another, but unlike true aggression, for play fighting to remain playful, it also incorporates a degree of cooperation and reciprocity – restrained competition seems to be its hallmark. Despite these common features, it should be noted that both the advantage competed over and the mechanisms by which restraint is achieved varies across species. Such variation mitigates simple generalities. For example, how empirical support for a proposed adaptive function in one species not being replicated in another, is to be interpreted. What has emerged over the past few decades is that play fighting is diverse, varying across several dimensions, some superficial, some fundamental, making choosing species to compare a challenge. In this paper, we explore various design features that constitute play fighting and the ways these can be modified across different species and lineages of species. Given that a major pillar of ethology is that description precedes explanation, having a good grasp of the behavioral diversity of play fighting is an essential starting point for detailed analyses of the mechanisms and functions of play. We show that commonalities across species likely involve different mechanisms than do species idiosyncrasies, and that different styles of play fighting likely afford different adaptive opportunities
Light scattering from disordered overlayers of metallic nanoparticles
We develop a theory for light scattering from a disordered layer of metal
nanoparticles resting on a sample. Averaging over different disorder
realizations is done by a coherent potential approximation. The calculational
scheme takes into account effects of retardation, multipole excitations, and
interactions with the sample. We apply the theory to a system similar to the
one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663
(1998)] who used a layered Si/SiO/Si sample. The calculated results agree
rather well with the experimental ones. In particular we find conspicuous
maxima in the scattering intensity at long wavelengths (much longer than those
corresponding to plasmon resonances in the particles). We show that these
maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure
Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure
We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel β-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-L-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-L-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel β-sheet. In the proteins with antiparallel β-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic “Z”-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.
A governance model for integrated primary/ secondary care for the health-reforming first world: results of a systematic review
Internationally, key health care reform elements rely on improved integration of care between the primary and secondary sectors. The objective of this systematic review is to synthesise the existing published literature on elements of current integrated primary/secondary health care. These elements and how they have supported integrated healthcare governance are presented.A systematic review of peer-reviewed literature from PubMed, MEDLINE, CINAHL, the Cochrane Library, Informit Health Collection, the Primary Health Care Research and Information Service, the Canadian Health Services Research Foundation, European Foundation for Primary Care, European Forum for Primary Care, and Europa Sinapse was undertaken for the years 2006-2012. Relevant websites were also searched for grey literature. Papers were assessed by two assessors according to agreed inclusion criteria which were published in English, between 2006-2012, studies describing an integrated primary/secondary care model, and had reported outcomes in care quality, efficiency and/or satisfaction.Twenty-one studies met the inclusion criteria. All studies evaluated the process of integrated governance and service delivery structures, rather than the effectiveness of services. They included case reports and qualitative data analyses addressing policy change, business issues and issues of clinical integration. A thematic synthesis approach organising data according to themes identified ten elements needed for integrated primary/secondary health care governance across a regional setting including: joint planning; integrated information communication technology; change management; shared clinical priorities; incentives; population focus; measurement - using data as a quality improvement tool; continuing professional development supporting joint working; patient/community engagement; and, innovation.All examples of successful primary/secondary care integration reported in the literature have focused on a combination of some, if not all, of the ten elements described in this paper, and there appears to be agreement that multiple elements are required to ensure successful and sustained integration efforts. Whilst no one model fits all systems these elements provide a focus for setting up integration initiatives which need to be flexible for adapting to local conditions and settings
Theory of the Lorentz force flowmeter
A Lorentz force flowmeter is a device for the contactless measurement of flow rates in electrically conducting fluids. It is based on the measurement of a force on a magnet system that acts upon the flow. We formulate the theory of the Lorentz force flowmeter which connects the measured force to the unknown flow rate. We first apply the theory to three specific cases, namely (i) pipe flow exposed to a longitudinal magnetic field, (ii) pipe flow under the influence of a transverse magnetic field and (iii) interaction of a localized distribution of magnetic material with a uniformly moving sheet of metal. These examples provide the key scaling laws of the method and illustrate how the force depends on the shape of the velocity profile and the presence of turbulent fluctuations in the flow. Moreover, we formulate the general kinematic theory which holds for arbitrary distributions of magnetic material or electric currents and for any velocity distribution and which provides a rational framework for the prediction of the sensitivity of Lorentz force flowmeters in laboratory experiments and in industrial practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58171/2/njp7_8_299.pd
Microphase separation of highly amphiphilic, low N polymers by photoinduced copper-mediated polymerization, achieving sub-2 nm domains at half-pitch
The lower limit of domain size resolution using microphase separation of short poly(acrylic acid) homopolymers equipped with a short fluorinated tail, posing as an antagonist 'A block' in pseudo AB block copolymers has been investigated. An alkyl halide initiator with a fluorocarbon chain was utilized as a first 'A block' in the synthesis of low molecular weight polymers (1400-4300 g mol -1) using photoinduced Cu(ii)-mediated polymerization allowing for very narrow dispersity. Poly(tert-butyl acrylate) was synthesized and subsequently deprotected to give very low degrees of polymerization (N), amphiphilic polymers with low dispersity (D = 1.06-1.13). By exploiting the high driving force for demixing and the well-defined 'block' sizes, we are able to control the nanostructure in terms of domain size (down to 3.4 nm full-pitch) and morphology. This work demonstrates the simple and highly controlled synthesis of polymers to push the boundaries of the smallest achievable domain sizes obtained from polymer self-assembly
- …