696 research outputs found

    Damages for breach of contract: compensation, restitution, and vindication

    Get PDF

    Sleep in elite athletes and nutritional interventions to enhance sleep

    Get PDF
    Sleep has numerous important physiological and cognitive functions that may be particularly important to elite athletes. Recent evidence, as well as anecdotal information, suggests that athletes may experience a reduced quality and/or quantity of sleep. Sleep deprivation can have significant effects on athletic performance, especially submaximal, prolonged exercise. Compromised sleep may also influence learning, memory, cognition, pain perception, immunity and inflammation. Furthermore, changes in glucose metabolism and neuroendocrine function as a result of chronic, partial sleep deprivation may result in alterations in carbohydrate metabolism, appetite, food intake and protein synthesis. These factors can ultimately have a negative influence on an athlete’s nutritional, metabolic and endocrine status and hence potentially reduce athletic performance. Research has identified a number of neurotransmitters associated with the sleep–wake cycle. These include serotonin, gamma-aminobutyric acid, orexin, melanin-concentrating hormone, cholinergic, galanin, noradrenaline, and histamine. Therefore, nutritional interventions that may act on these neurotransmitters in the brain may also influence sleep. Carbohydrate, tryptophan, valerian, melatonin and other nutritional interventions have been investigated as possible sleep inducers and represent promising potential interventions. In this review, the factors influencing sleep quality and quantity in athletic populations are examined and the potential impact of nutritional interventions is considered. While there is some research investigating the effects of nutritional interventions on sleep, future research may highlight the importance of nutritional and dietary interventions to enhance sleep

    Monitoring Training Load to Understand Fatigue in Athletes

    Get PDF
    Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion analysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormonal/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to athletes and coaches; however, monitoring systems should be intuitive, provide efficient data analysis and interpretation, and enable efficient reporting of simple, yet scientifically valid, feedback

    Overtraining syndrome symptoms and diagnosis in athletes : Where is the research? A systematic review

    Get PDF
    Context: To understand overtraining syndrome (OTS), it is important to detail the physiological and psychological changes that occur in athletes. Objectives: To systematically establish and detail the physiological and psychological changes that occur as a result of OTS in athletes. Methods: Databases were searched for studies that were (1) original investigations; (2) English, full-text articles; (3) published in peer-reviewed journals; (4) investigations into adult humans and provided (5) objective evidence that detailed changes in performance from prior to the onset of OTS diagnosis and that performance was suppressed for more than 4 weeks and (6) objective evidence of psychological symptoms. Results: Zero studies provided objective evidence of detailed changes in performance from prior to the onset of OTS diagnosis and demonstrated suppressed performance for more than 4 weeks accompanied by changes in psychological symptoms. Conclusions: All studies failed to provide evidence of changes in performance and mood from “healthy” to an overtrained state with evidence of prolonged suppression of performance. While OTS may be observed in the field, little data is available describing how physiological and psychological symptoms manifest. This stems from vague terminology, difficulties in monitoring for prolonged periods of time, and the need for prospective testing. Real-world settings may facilitate the collection of such data, but the ideal testing battery that can easily be conducted on a regular basis does not yet exist. Consequently, it must be concluded that an evidence base of sufficient scientific quality for understanding OTS in athletes is lacking

    Effects of Sports Compression Socks on Performance, Physiological, and Hematological Alterations After Long-Haul Air Travel in Elite Female Volleyballers

    Get PDF
    Broatch, JR, Bishop, DJ, Zadow, EK, and Halson, S. Effects of sports compression socks on performance, physiological, and hematological alterations after long-haul air travel in elite female volleyballers. J Strength Cond Res 33(2): 492-501, 2019-The purpose of this investigation was to assess the merit of sports compression socks in minimizing travel-induced performance, physiological, and hematological alterations in elite female volleyball athletes. Twelve elite female volleyballers (age, 25 ± 2 years) traveled from Canberra (Australia) to Manila (Philippines), and were assigned to 1 of 2 conditions; compression socks (COMP, n = 6) worn during travel or a passive control (CON, n = 6). Dependent measures included countermovement jump (CMJ) performance, subjective ratings of well-being, cardiovascular function, calf girth, and markers of blood clotting, collected before (-24 hours, CMJ; -12 hours, all measures), during (+6.5 and +9 hours, subjective ratings and cardiovascular function), and after (+12 hours, all measures except CMJ; +24 hours and +48 hours, CMJ) travel. When compared with CON, small-to-large effects were observed for COMP to improve heart rate (+9 hours), oxygen saturation (+6.5 hours and +9 hours), alertness (+6.5 hours), fatigue (+6.5 hours), muscle soreness (+6.5 hours and +9 hours), and overall health (+6.5 hours) during travel. After travel, small-to-moderate effects were observed for COMP to improve systolic blood pressure (+12 hours), right calf girth (+12 hours), CMJ height (+24 hours), mean velocity (+24 hours), and relative power (+48 hours), compared with CON. COMP had no effect on the markers of blood clotting. This study suggests that compression socks are beneficial in combating the stressors imposed by long-haul travel in elite athletes, and may have merit for individuals frequenting long-haul travel or competing soon after flying

    Team sport athletes’ perceptions and use of recovery strategies: a mixed-methods survey study

    Get PDF
    Background: A variety of recovery strategies are used by athletes, although there is currently no research that investigates perceptions and usage of recovery by different competition levels of team sport athletes. Methods: The recovery techniques used by team sport athletes of different competition levels was investigated by survey. Specifically this study investigated if, when, why and how the following recovery strategies were used: active land-based recovery (ALB), active water-based recovery (AWB), stretching (STR), cold water immersion (CWI) and contrast water therapy (CWT). Results: Three hundred and thirty-one athletes were surveyed. Fifty-seven percent were found to utilise one or more recovery strategies. Stretching was rated the most effective recovery strategy (4.4/5) with ALB considered the least effective by its users (3.6/5). The water immersion strategies were considered effective/ineffective mainly due to psychological reasons; in contrast STR and ALB were considered to be effective/ineffective mainly due to physical reasons. Conclusions: This study demonstrates that athletes may not be aware of the specific effects that a recovery strategy has upon their physical recovery and thus athlete and coach recovery education is encouraged. This study also provides new information on the prevalence of different recovery strategies and contextual information that may be useful to inform best practice among coaches and athletes

    Reliability of a 2-Bout exercise test on a Wattbike cycle ergometer

    Get PDF
    Purpose: To determine the intraday and interday reliability of a 2 × 4-min performance test on a cycle ergometer (Wattbike) separated by 30 min of passive recovery (2 × 4MMP). Methods: Twelve highly trained cyclists (mean ± SD; age = 20 ± 2 y, predicted VO2max = 59.0 ± 3.6 mL · kg–1 · min–1) completed six 2 × 4MMP cycling tests on a Wattbike ergometer separated by 7 d. Mean power was measured to determine intraday (test 1 [T1] to test 2 [T2]) and interday reliability (weeks 1–6) over the repeated trials. Results: The mean intraday reliabilities of the 2 × 4MMP test, as expressed by the typical error of measurement (TEM, W) and coefficient of variation (CV, %) over the 6 wk, were 10.0 W (95% confidence limits [CL] 8.2–11.8), and 2.6% (95%CL 2.1–3.1), respectively. The mean interday reliability TEM and CV for T1 over the 6 wk were 10.4 W (95%CL 8.7–13.3) and 2.7% (95%CL 2.3–3.5), respectively, and 11.7 W (95%CL 9.8–15.1) and 3.0% (95%CL 2.5–3.9) for T2. Conclusion: The testing protocol performed on a Wattbike cycle ergometer in the current study is reproducible in highly trained cyclists. The high intraday and interday reliability make it a reliable method for monitoring cycling performance and for investigating factors that affect performance in cycling events

    The chronotype of elite athletes

    Get PDF
    The aims of this study were (i) to compare the chronotype distribution of elite athletes to a young adult population and (ii) to determine if there was a tendency for athletes to select and/or participate in sports which suited their chronotype. A total of 114 elite athletes from five sports (cricket, cycling, hockey, soccer and triathlon) participated in this study. The participants’ chronotype, sleepiness, sleep satisfaction and sleep quality were determined using the Horne and Östberg Morningness and Eveningness questionnaire, the Epworth Sleepiness Scale and questions concerning their sleep satisfaction and quality. All questionnaires were administered during a typical training phase that was not in the lead up to competition and/or post competition. No differences between chronotype group for sleepiness, sleep satisfaction or sleep quality were found. There was a significantly higher proportion of triathletes that were morning and intermediate types compared to the control group χ2 (2) = 7.5, p = 0.02. A significant relationship between sport and chronotype group (χ2(4)=15.9, p = 0.04) was observed, with a higher frequency of morning types involved in sports that required morning training. There was a clear indication that athletes tended to select and pursue sports that suited their chronotype. This was evident by the amount of morning types involved in morning sports. Given that athletes are more likely to pursue and excel in sports which suit their chronotype, it is recommended that coaches consider the athlete’s chronotype during selection processes or if possible design and implement changes to training schedules to either suit the athletes’ chronotype or the timing of an upcoming competition

    Sleep, circadian biology and skeletal muscle interactions : Implications for metabolic health

    Get PDF
    There currently exists a modern epidemic of sleep loss, triggered by the changing demands of our 21st century lifestyle that embrace ‘round-the-clock’ remote working hours, access to energy-dense food, prolonged periods of inactivity, and on-line social activities. Disturbances to sleep patterns impart widespread and adverse effects on numerous cells, tissues, and organs. Insufficient sleep causes circadian misalignment in humans, including perturbed peripheral clocks, leading to disrupted skeletal muscle and liver metabolism, and whole-body energy homeostasis. Fragmented or insufficient sleep also perturbs the hormonal milieu, shifting it towards a catabolic state, resulting in reduced rates of skeletal muscle protein synthesis. The interaction between disrupted sleep and skeletal muscle metabolic health is complex, with the mechanisms underpinning sleep-related disturbances on this tissue often multifaceted. Strategies to promote sufficient sleep duration combined with the appropriate timing of meals and physical activity to maintain circadian rhythmicity are important to mitigate the adverse effects of inadequate sleep on whole-body and skeletal muscle metabolic health. This review summarises the complex relationship between sleep, circadian biology, and skeletal muscle, and discusses the effectiveness of several strategies to mitigate the negative effects of disturbed sleep or circadian rhythms on skeletal muscle health
    corecore