295 research outputs found
ac Losses in a Finite Z Stack Using an Anisotropic Homogeneous-Medium Approximation
A finite stack of thin superconducting tapes, all carrying a fixed current I,
can be approximated by an anisotropic superconducting bar with critical current
density Jc=Ic/2aD, where Ic is the critical current of each tape, 2a is the
tape width, and D is the tape-to-tape periodicity. The current density J must
obey the constraint \int J dx = I/D, where the tapes lie parallel to the x axis
and are stacked along the z axis. We suppose that Jc is independent of field
(Bean approximation) and look for a solution to the critical state for
arbitrary height 2b of the stack. For c<|x|<a we have J=Jc, and for |x|<c the
critical state requires that Bz=0. We show that this implies \partial
J/\partial x=0 in the central region. Setting c as a constant (independent of
z) results in field profiles remarkably close to the desired one (Bz=0 for
|x|<c) as long as the aspect ratio b/a is not too small. We evaluate various
criteria for choosing c, and we show that the calculated hysteretic losses
depend only weakly on how c is chosen. We argue that for small D/a the
anisotropic homogeneous-medium approximation gives a reasonably accurate
estimate of the ac losses in a finite Z stack. The results for a Z stack can be
used to calculate the transport losses in a pancake coil wound with
superconducting tape.Comment: 21 pages, 17 figures, accepted by Supercond. Sci. Techno
Correspondence between 3D ear depth information derived from 2D images and MRI: Use of a neural-network model
There is much interest in anthropometric-derived head-related transfer functions (HRTFs) for simulating audio for virtual-reality systems. Three-dimensional (3D) anthropometric measures can be measured directly from individuals, or indirectly simulated from two-dimensional (2D) pinna images. The latter often requires additional pinna, head and/or torso measures. This study investigated accuracy with which 3D depth information can be obtained solely from 2D pinna images using an unsupervised monocular-depth estimation neural-network model. Output was compared to depth information obtained from corresponding magnetic resonance imaging (MRI) head scans (ground truth). Results show that 3D depth estimates obtained from 2D pinna images corresponded closely with MRI head-scan depth values
New possibilities for research on reef fish across the continental shelf of South Africa
[From introduction] Subtidal research presents numerous challenges that restrict the ability to answer fundamental ecological questions related to reef systems. These challenges are closely associated with traditional monitoring methods and include depth restrictions (e.g. safe diving depths for underwater visual census), habitat destruction (e.g. trawling), mortality of target species (e.g. controlled angling and fish traps), and high operating costs (e.g. remotely operated vehicles
and large research vessels. Whereas many of these challenges do not apply or are avoidable in the shallow subtidal environment, the difficulties grow as one attempts to sample deeper benthic habitats. This situation has resulted in a paucity of knowledge on the structure and ecology of deep water reef habitats around the coast of South Africa and in most marine areas around the world. Furthermore, the inability to effectively survey deep water benthic environments has limited the capacity of researchers to investigate connectivity between shallow and deep water habitats in a standardised and comparable fashio
Application of realistic effective interactions to the structure of the Zr isotopes
We calculate the low-lying spectra of the zirconium isotopes Z=40 with
neutron numbers from N=52 to N=60 using the 1p1/20g9/2 proton and
2s1d0g7/20h11/2 neutron sub-shells to define the model space. Effective
proton-proton, neutron--neutron and proton-neutron interactions have been
derived using 88Sr as closed core and employing perturbative many-body
techniques. The starting point is the nucleon-nucleon potential derived from
modern meson exchange models. The comprehensive shell-model calculation
performed in this work provides a qualitative reproduction of essential
properties such as the sub-shell closures in 96Zr and 98Zr.Comment: To appear in Phys Rev C, june 2000, 8 figs, Revtex latex styl
Theory of interlayer exchange interactions in magnetic multilayers
This paper presents a review of the phenomenon of interlayer exchange
coupling in magnetic multilayers. The emphasis is put on a pedagogical
presentation of the mechanism of the phenomenon, which has been successfully
explained in terms of a spin-dependent quantum confinement effect. The
theoretical predictions are discussed in connection with corresponding
experimental investigations.Comment: 18 pages, 4 PS figures, LaTeX with IOP package; v2: ref. added.
Further (p)reprints available from http://www.mpi-halle.de/~theory
Communication
This chapter discusses research on the
capacity and effectiveness of government’s
communications strategy as South Africa
went through the various stages of lockdown
during the Covid-19 pandemic in 2020. It
probes the working relationship between
communications from all spheres of
government and community, private, digital,
and social media, as well as organised civil
society before and during the lockdown and
assesses its impact and efficacy.
Recognising the multilingual nature of
South African society, the urban–rural
digital divide, and the prohibitive costs of
data, the chapter identifies lessons and
reaffirms the relevance of the development
communications approach to government–
citizen communications. It motivates for the prioritisation of accessible, multilingual digital
communications with a citizen feedback loop
that is transparent and responsive to ensure
people are informed and empowered, as
envisioned in the Constitution.
Such responsiveness needs an enabling
environment from government and from
the public, private, and community media
landscape. Collaboration and cooperation
across these sectors with government
communications and with the nongovernmental
health and communications
sectors is critical in such an all-encompassing
crisis. The chapter highlights the need to
continue to understand South Africa’s highly
diverse communication space, in which
digital new media platforms exist alongside
loudhailers, and make accommodations in
legislation, policy, and government coordination
with social partners to reach all people across
the digital, class, and language divides.This chapter 4 is published in the first edition of South Africa Covid-19 country report in June 2021.https://www.gov.za/sites/default/files/gcis_document/202206/sa-covid-19-reporta.pd
Fermi Surface Properties of Low Concentration CeLaB: dHvA
The de Haas-van Alphen effect is used to study angular dependent extremal
areas of the Fermi Surfaces (FS) and effective masses of CeLaB alloys for between 0 and 0.05. The FS of these alloys was previously
observed to be spin polarized at low Ce concentration ( = 0.05). This work
gives the details of the initial development of the topology and spin
polarization of the FS from that of unpolarized metallic LaB to that of
spin polarized heavy Fermion CeB .Comment: 7 pages, 9 figures, submitted to PR
New possibilities for research on reef fish across the continental shelf of South Africa
[From introduction] Subtidal research presents numerous challenges that restrict the ability to answer fundamental ecological questions related to reef systems. These challenges are closely associated with traditional monitoring methods and include depth restrictions (e.g. safe diving depths for underwater visual census), habitat destruction (e.g. trawling), mortality of target species (e.g. controlled angling and fish traps), and high operating costs (e.g. remotely operated vehicles and large research vessels. Whereas many of these challenges do not apply or are avoidable in the shallow subtidal environment, the difficulties grow as one attempts to sample deeper benthic habitats. This situation has resulted in a paucity of knowledge on the structure and ecology of deep water reef habitats around the coast of South Africa and in most marine areas around the world. Furthermore, the inability to effectively survey deep water benthic environments has limited the capacity of researchers to investigate connectivity between shallow and deep water habitats in a standardised and comparable fashion
Passive sampling and benchmarking to rank HOC levels in the aquatic environment
The identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water. This is based on a unique passive sampling dataset acquired over a 10-year period with silicone rubber exposures in surface water bodies across Europe. We show with these data that, far from point sources of contamination, levels of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) in water approach equilibrium with atmospheric concentrations near the air/water surface. This results in a relatively constant ratio of their concentrations in the water phase. This, in turn, allows us to (i) identify sites of contamination with either of the two chemicals when the HCB/PeCB ratio deviates from theory and (ii) define benchmark levels of other HOCs in surface water against those of HCB and/or PeCB. For two polychlorinated biphenyls (congener 28 and 52) used as model chemicals, differences in contamination levels between the more contaminated and pristine sites are wider than differences in HCB and PeCB concentrations endorsing the benchmarking procedure
- …