5,690 research outputs found

    The Orbifold-String Theories of Permutation-Type: III. Lorentzian and Euclidean Space-Times in a Large Example

    Full text link
    To illustrate the general results of the previous paper, we discuss here a large concrete example of the orbifold-string theories of permutation-type. For each of the many subexamples, we focus on evaluation of the \emph{target space-time dimension} D^j(σ)\hat{D}_j(\sigma), the \emph{target space-time signature} and the \emph{target space-time symmetry} of each cycle jj in each twisted sector σ\sigma. We find in particular a gratifying \emph{space-time symmetry enhancement} which naturally matches the space-time symmetry of each cycle to its space-time dimension. Although the orbifolds of Z2\Z_{2}-permutation-type are naturally Lorentzian, we find that the target space-times associated to larger permutation groups can be Lorentzian, Euclidean and even null (\hat{D}_{j}(\sigma)=0), with varying space-time dimensions, signature and symmetry in a single orbifold.Comment: 36 page

    The orbifold-string theories of permutation-type: II. Cycle dynamics and target space-time dimensions

    Full text link
    We continue our discussion of the general bosonic prototype of the new orbifold-string theories of permutation type. Supplementing the extended physical-state conditions of the previous paper, we construct here the extended Virasoro generators with cycle central charge c^j(σ)=26fj(σ)\hat{c}_j(\sigma)=26f_j(\sigma), where fj(σ)f_j(\sigma) is the length of cycle jj in twisted sector σ\sigma. We also find an equivalent, reduced formulation of each physical-state problem at reduced cycle central charge cj(σ)=26c_j(\sigma)=26. These tools are used to begin the study of the target space-time dimension D^j(σ)\hat{D}_j(\sigma) of cycle jj in sector σ\sigma, which is naturally defined as the number of zero modes (momenta) of each cycle. The general model-dependent formulae derived here will be used extensively in succeeding papers, but are evaluated in this paper only for the simplest case of the "pure" permutation orbifolds.Comment: 32 page

    Two Large Examples in Orbifold Theory: Abelian Orbifolds and the Charge Conjugation Orbifold on su(n)

    Get PDF
    Recently the operator algebra and twisted vertex operator equations were given for each sector of all WZW orbifolds, and a set of twisted KZ equations for the WZW permutation orbifolds were worked out as a large example. In this companion paper we report two further large examples of this development. In the first example we solve the twisted vertex operator equations in an abelian limit to obtain the twisted vertex operators and correlators of a large class of abelian orbifolds. In the second example, the twisted vertex operator equations are applied to obtain a set of twisted KZ equations for the (outer-automorphic) charge conjugation orbifold on su(n \geq 3).Comment: 58 pages, v2: three minor typo

    Two photon excitation as a tool for atmospheric and kinetic research

    Get PDF
    Progress was made in the following areas: two photon excitation cross section of hydroxyl, marker fringe generation of deep UV and VUV radiation, and CN radiative lifetimes

    The Orbifold-String Theories of Permutation-Type: I. One Twisted BRST per Cycle per Sector

    Get PDF
    We resume our discussion of the new orbifold-string theories of permutation-type, focusing in the present series on the algebraic formulation of the general bosonic prototype and especially the target space-times of the theories. In this first paper of the series, we construct one twisted BRST system for each cycle jj in each twisted sector σ\sigma of the general case, verifying in particular the previously-conjectured algebra [Qi(σ),Qj(σ)]+=0[Q_{i}(\sigma),Q_{j}(\sigma)]_{+} =0 of the BRST charges. The BRST systems then imply a set of extended physical-state conditions for the matter of each cycle at cycle central charge c^j(σ)=26fj(σ)\hat{c}_{j}(\sigma)=26f_{j}(\sigma) where fj(σ)f_{j}(\sigma) is the length of cycle jj.Comment: 31 page

    Unified Einstein-Virasoro Master Equation in the General Non-Linear Sigma Model

    Full text link
    The Virasoro master equation (VME) describes the general affine-Virasoro construction T=L^{ab}J_aJ_b+iD^a \dif J_a in the operator algebra of the WZW model, where LabL^{ab} is the inverse inertia tensor and DaD^a is the improvement vector. In this paper, we generalize this construction to find the general (one-loop) Virasoro construction in the operator algebra of the general non-linear sigma model. The result is a unified Einstein-Virasoro master equation which couples the spacetime spin-two field LabL^{ab} to the background fields of the sigma model. For a particular solution LGabL_G^{ab}, the unified system reduces to the canonical stress tensors and conventional Einstein equations of the sigma model, and the system reduces to the general affine-Virasoro construction and the VME when the sigma model is taken to be the WZW action. More generally, the unified system describes a space of conformal field theories which is presumably much larger than the sum of the general affine-Virasoro construction and the sigma model with its canonical stress tensors. We also discuss a number of algebraic and geometrical properties of the system, including its relation to an unsolved problem in the theory of GG-structures on manifolds with torsion.Comment: LaTeX, 55 pages, one postscript figure, uses epsfig.sty. contains a few minor corrections; version to be published in Int. J. Mod. Phys.

    Unification of the General Non-Linear Sigma Model and the Virasoro Master Equation

    Get PDF
    The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affine Lie algebra) of the WZW model, while the Einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form Lij∂xi∂xjL_{ij} \partial x^i \partial x^j in the background of a general sigma model. The requirement that these operators satisfy the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field LijL_{ij} couples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.Comment: 18 pages, Latex. Talk presented by MBH at the NATO Workshop `New Developments in Quantum Field Theory', June 14-20, 1997, Zakopane, Polan

    The Orbifolds of Permutation-Type as Physical String Systems at Multiples of c=26 IV. Orientation Orbifolds Include Orientifolds

    Full text link
    In this fourth paper of the series, I clarify the somewhat mysterious relation between the large class of {\it orientation orbifolds} (with twisted open-string CFT's at c^=52\hat c=52) and {\it orientifolds} (with untwisted open strings at c=26c=26), both of which have been associated to division by world-sheet orientation-reversing automorphisms. In particular -- following a spectral clue in the previous paper -- I show that, even as an {\it interacting string system}, a certain half-integer-moded orientation orbifold-string system is in fact equivalent to the archetypal orientifold. The subtitle of this paper, that orientation orbifolds include and generalize standard orientifolds, then follows because there are many other orientation orbifold-string systems -- with higher fractional modeing -- which are not equivalent to untwisted string systems.Comment: 22 pages, typos correcte

    The Algebras of Large N Matrix Mechanics

    Get PDF
    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.Comment: 70 pages, expanded historical remark
    • …
    corecore