2 research outputs found

    Myocardial energy metabolism and ultrastructure with polarizing and depolarizing cardioplegia in a porcine model

    Get PDF
    OBJECTIVES: This study investigated whether the novel St. Thomas’ Hospital polarizing cardioplegic solution (STH-POL) with esmolol/adenosine/magnesium offers improved myocardial protection by reducing demands for high-energy phosphates during cardiac arrest compared to the depolarizing St. Thomas’ Hospital cardioplegic solution No 2 (STH-2). METHODS: Twenty anaesthetised pigs on tepid cardiopulmonary bypass were randomized to cardiac arrest for 60 min with antegrade freshly mixed, repeated, cold, oxygenated STH-POL or STH-2 blood cardioplegia every 20 min. Haemodynamic variables were continuously recorded. Left ventricular biopsies, snap-frozen in liquid nitrogen or fixed in glutaraldehyde, were obtained at Baseline, 58 min after cross-clamp and 20 and 180 min after weaning from bypass. Adenine nucleotides were evaluated by high-performance liquid chromatography, myocardial ultrastructure with morphometry. RESULTS: With STH-POL myocardial creatine phosphate was increased compared to STH-2 at 58 min of cross-clamp [59.9 ± 6.4 (SEM) vs 44.5 ± 7.4 nmol/mg protein; P < 0.025], and at 20 min after reperfusion (61.0 ± 6.7 vs 49.0 ± 5.5 nmol/mg protein; P < 0.05), ATP levels were increased at 20 min of reperfusion with STH-POL (35.4 ± 1.1 vs 32.4 ± 1.2 nmol/mg protein; P < 0.05). Mitochondrial surface-to-volume ratio was decreased with polarizing compared to depolarizing cardioplegia 20 min after reperfusion (6.74 ± 0.14 vs 7.46 ± 0.13 µm2/µm3; P = 0.047). None of these differences were present at 180 min of reperfusion. From 150 min of reperfusion and onwards, cardiac index was increased with STH-POL; 4.8 ± 0.2 compared to 4.0 ± 0.2 l/min/m2 (P = 0.011) for STH-2 at 180 min. CONCLUSIONS: Polarizing STH-POL cardioplegia improved energy status compared to standard STH-2 depolarizing blood cardioplegia during cardioplegic arrest and early after reperfusion.publishedVersio

    Myocardial energy metabolism and ultrastructure with polarizing and depolarizing cardioplegia in a porcine model

    No full text
    OBJECTIVES: This study investigated whether the novel St. Thomas’ Hospital polarizing cardioplegic solution (STH-POL) with esmolol/adenosine/magnesium offers improved myocardial protection by reducing demands for high-energy phosphates during cardiac arrest compared to the depolarizing St. Thomas’ Hospital cardioplegic solution No 2 (STH-2). METHODS: Twenty anaesthetised pigs on tepid cardiopulmonary bypass were randomized to cardiac arrest for 60 min with antegrade freshly mixed, repeated, cold, oxygenated STH-POL or STH-2 blood cardioplegia every 20 min. Haemodynamic variables were continuously recorded. Left ventricular biopsies, snap-frozen in liquid nitrogen or fixed in glutaraldehyde, were obtained at Baseline, 58 min after cross-clamp and 20 and 180 min after weaning from bypass. Adenine nucleotides were evaluated by high-performance liquid chromatography, myocardial ultrastructure with morphometry. RESULTS: With STH-POL myocardial creatine phosphate was increased compared to STH-2 at 58 min of cross-clamp [59.9 ± 6.4 (SEM) vs 44.5 ± 7.4 nmol/mg protein; P < 0.025], and at 20 min after reperfusion (61.0 ± 6.7 vs 49.0 ± 5.5 nmol/mg protein; P < 0.05), ATP levels were increased at 20 min of reperfusion with STH-POL (35.4 ± 1.1 vs 32.4 ± 1.2 nmol/mg protein; P < 0.05). Mitochondrial surface-to-volume ratio was decreased with polarizing compared to depolarizing cardioplegia 20 min after reperfusion (6.74 ± 0.14 vs 7.46 ± 0.13 µm2/µm3; P = 0.047). None of these differences were present at 180 min of reperfusion. From 150 min of reperfusion and onwards, cardiac index was increased with STH-POL; 4.8 ± 0.2 compared to 4.0 ± 0.2 l/min/m2 (P = 0.011) for STH-2 at 180 min. CONCLUSIONS: Polarizing STH-POL cardioplegia improved energy status compared to standard STH-2 depolarizing blood cardioplegia during cardioplegic arrest and early after reperfusion
    corecore