601 research outputs found

    Neural Correlates of Theory of Mind Are Preserved in Young Women With Anorexia Nervosa

    Get PDF
    People with anorexia nervosa (AN) commonly exhibit social difficulties, which may be related to problems with understanding the perspectives of others, commonly known as Theory of Mind (ToM) processing. However, there is a dearth of literature investigating the neural basis of these differences in ToM and at what age they emerge. This study aimed to test for differences in the neural correlates of ToM processes in young women with AN, and young women weight-restored (WR) from AN, as compared to healthy control participants (HC). Based on previous findings in AN, we hypothesized that young women with current or prior AN, as compared to HCs, would exhibit a reduced neural response in the medial prefrontal cortex (mPFC), the inferior frontal gyrus, and the temporo-parietal junction (TPJ) whilst completing a ToM task. We recruited 73 young women with AN, 45 WR young women, and 70 young women without a history of AN to take part in the current study. Whilst undergoing a functional magnetic resonance imaging (fMRI) scan, participants completed the Frith-Happé task, which is a commonly used measure of ToM with demonstrated reliability and validity in adult populations. In this task, participants viewed the movements of triangles, which depicted either action movements, simple interactions, or complex social interactions. Viewing trials with more complex social interactions in the Frith-Happé task was associated with increased brain activation in regions including the right TPJ, the bilateral mPFC, the cerebellum, and the dorsolateral prefrontal cortex. There were no group differences in neural activation in response to the ToM contrast. Overall, these results suggest that the neural basis of spontaneous mentalizing is preserved in most young women with AN

    Probing the nanoscale phase separation in binary photovoltaic blends of poly(3-hexylthiophene) and methanofullerene by energy transfer

    Get PDF
    The generation of charge carriers in organic photovoltaic devices requires exciton diffusion to an interface of electron donor and acceptor materials, where charge separation occurs. We report a time resolved study of fluorescence quenching in films of poly(3-hexylthiophene) containing a range of fractions of the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We show that energy transfer from P3HT to PCBM helps to bring excitons to the interface, where they dissociate into charge carriers. Fluorescence quenching in blends with ≤50 wt% of PCBM is controlled by exciton diffusion in P3HT. This allows us to estimate the average size of PCBM domains to be about 9 nm in the 1:1 blend. The implications for polymer solar cells are discussed

    First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications

    Get PDF
    A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes sampled, three revealed meaningful results providing the first well-dated Mesoproterozoic palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance between this new pole and two roughly coeval poles from Dronning Maud Land and Coats Land (East Antarctica) demonstrates that these two terranes were not rigidly connected to the Mawson Craton ca. 1134 Ma. Comparison between the new pole and that of the broadly coeval Lakeview dolerite from the North Australian Craton supports the putative ~40° late Neoproterozoic relative rotation between the North Australian Craton and the combined South and West Australian cratons. A mean ca. 1134 Ma pole for the Proto-Australia Craton is calculated by combining our new pole and that of the Lakeview dolerite after restoring the 40° intracontinental rotation. A comparison of this mean pole with the roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT reconstruction of Australia and Laurentia was not viable for ca. 1134 Ma

    Optical investigation of three‐dimensional human skin equivalents: A pilot study

    Get PDF
    Human skin equivalents (HSEs) are three-dimensional living models of human skin that are prepared in vitro by seeding cells onto an appropriate scaffold. They recreate the structure and biological behaviour of real skin, allowing the investigation of processes such as keratinocyte differentiation and interactions between the dermal and epidermal layers. However, for wider applications, their optical and mechanical properties should also replicate those of real skin. We therefore conducted a pilot study to investigate the optical properties of HSEs. We compared Monte Carlo simulations of (a) real human skin and (b) two-layer optical models of HSEs with (c) experimental measurements of transmittance through HSE samples. The skin layers were described using a hybrid collection of optical attenuation coefficients. A linear relationship was observed between the simulations and experiments. For samples thinner than 0.5 mm, an exponential increase in detected power was observed due to fewer instances of absorption and scattering

    Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis

    Get PDF
    Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity
    corecore