3 research outputs found

    A Lightweight and Efficient Digital Image Encryption Using Hybrid Chaotic Systems for Wireless Network Applications

    Get PDF
    Due to limited processing capabilities and other constraints of most wireless networks, many existing security algorithms do not consider the network efficiency. This is because most of these security solutions exhibit intolerable overhead and consider only securing scalar data, which are not suitable for other data types such as digital images, hence affecting the provided security level and network performance. Thus, in this paper, we propose a lightweight and efficient security scheme based on chaotic algorithms to efficiently encrypt digital images. Our proposed algorithm handles digital images in two phases: Firstly, digital images are split into blocks and compressed by processing them in frequency domain instead of Red-Green-Blue (RGB) domain. The ultimate goal is to reduce their sizes to speed up the encryption process and to break the correlation among image pixel values. Secondly, 2D Logistic chaotic map is deployed in key generation, permutation, and substitution stages for image pixel shuffling and transposition. In addition, 2D Henon chaotic map is deployed to change the pixel values in the diffusion stage in order to enhance the required level of security and resist various security attacks. Security performance analysis based on standard test images shows that our proposed scheme overcomes the performance of other existing techniques

    Hop-by-hop Content Distribution with Network Coding in Multihop Wireless Networks

    Get PDF
    The predominant use of today's networks is content access and distribution. Network Coding (NC) is an innovative technique that has potential to improve the efficiency of multicast content distribution over multihop Wireless Mesh Networks (WMNs) by allowing intermediate Forwarding Nodes (FNs) to encode and then forward data packets. Practical protocols are needed to realize the benefits of the NC technique. However, the existing NC-based multicast protocols cannot accurately determine the minimum number of coded packets that a FN should send in order to ensure successful data delivery to the destinations, so that many redundant packets are injected into the network, leading to performance degradation. In this paper, we propose HopCaster, a novel reliable multicast protocol that incorporates network coding with hop-by-hop transport. HopCaster completely eliminates the need for estimating the number of coded packets to be transmitted by a FN, and avoids redundant packet transmissions. It also effectively addresses the challenges of heterogeneous multicast receivers. Moreover, a cross-layer multicast rate adaptation mechanism is proposed, which enables HopCaster to optimize multicast throughput by dynamically adjusting wireless transmission rate based on the changes in the receiver population and channel conditions during the course of multicasting a coded data chunk. Our evaluations show that HopCaster significantly outperforms the existing NC-based multicast protocols
    corecore