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A B S T R A C T

The predominant use of today's networks is content access and distribution. Network Coding (NC) is an
innovative technique that has potential to improve the efficiency of multicast content distribution over multihop
Wireless Mesh Networks (WMNs) by allowing intermediate Forwarding Nodes (FNs) to encode and then
forward data packets. Practical protocols are needed to realize the benefits of the NC technique. However, the
existing NC-based multicast protocols cannot accurately determine the minimum number of coded packets that
a FN should send in order to ensure successful data delivery to the destinations, so that many redundant packets
are injected into the network, leading to performance degradation. In this paper, we propose HopCaster, a novel
reliable multicast protocol that incorporates network coding with hop-by-hop transport. HopCaster completely
eliminates the need for estimating the number of coded packets to be transmitted by a FN, and avoids
redundant packet transmissions. It also effectively addresses the challenges of heterogeneous multicast
receivers. Moreover, a cross-layer multicast rate adaptation mechanism is proposed, which enables
HopCaster to optimize multicast throughput by dynamically adjusting wireless transmission rate based on
the changes in the receiver population and channel conditions during the course of multicasting a coded data
chunk. Our evaluations show that HopCaster significantly outperforms the existing NC-based multicast
protocols.

1. Introduction

The predominant use of today's Internet is content access and
distribution. Multimedia content traffic is growing at an exponential
rate. This trend is expected to continue in the foreseeable future. For
example, it is forecasted by Cisco [1] that global mobile data traffic will
increase nearly tenfold between 2014 and 2019. Recently, there is
renewed research interest in supporting multicast distribution to
deliver various services such as live event video streaming, social
content pushing, file sharing, software upgrades, mobile TV, as well as
other applications for which multiple users concurrently consume the
same content [2]. The demand for these applications is becoming
increasingly common, and multicast is much more efficient in deliver-
ing them than unicast by sharing network resources. The Third
Generation Partnership Project (3GPP) recently defined the Evolved

Multimedia Broadcast/Multicast Service (eMBMS) standard [3] to
support streaming and downloading applications. Several operators
have started field trials for eMBMS services.

These multicast applications have strict Quality of Service (QoS)
requirements. Many of them require 100% reliability with high
throughput. Any packet loss may cause severe quality degradation,
and users always desire to get content as quickly as possible. It is
challenging to achieve reliable and high-throughput multicast, espe-
cially in multihop Wireless Mesh Networks (WMNs) due to inter-
ference, channel fading, and limited bandwidth. Furthermore, a unique
issue in multicast is bandwidth heterogeneity amongst multicast
receivers. The receivers with poor network connectivity or a low-
throughput path from the source may greatly degrade the performance
of receivers with good network connectivity as the reliability require-
ments of the worst receiver have to be met.

Traditional reliable multicast protocols, including eMBMS, are
client–server based, in which intermediate routers or forwarding nodes
simply duplicate and forward packets. These protocols employ end-to-
end Forward Error Correction (FEC), Automatic Repeat Request (ARQ)
or hybrid FEC-ARQ techniques [4–7] at the application layer of the
clients and servers to achieve multicast reliability. However, their
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performance is limited by the multicast receivers with the worst path
from the source.

Network Coding (NC) is an innovative technique to improve
reliability and throughput in WMNs. The basic idea of NC is to allow
intermediate Forwarding Nodes (FNs) to encode data packets, instead
of simply replicating and forwarding packets, and thus take advantage
of the wireless broadcast medium to reduce the number of required
transmissions for delivery of the data [8,9]. Especially, intra-flow
random linear network coding [10,11] has attracted interest due to
its low control overhead and high efficiency along with implementation
simplicity, in which a FN randomly generates linear combinations of
received packets belonging to a data flow over some fields, and
forwards the coded packets. Random mixing at each FN ensures that
if a group of FNs hear the same packet transmission, with high
probability, the coded packets generated and forwarded by the different
FNs will be linearly independent, removing duplicate packet transmis-
sions over shared wireless medium. A node can not only receive the
packets from its direct parent node but also overhear the coded packets
of the same data flow transmitted by other neighbors. Intra-flow
random NC thus makes opportunistic forwarding and overhearing
more effective in WMNs so as to achieve significant performance gains
compared to non-coding schemes.

However, the use of NC introduces new challenges in designing a
practical multicast protocol. First, a FN does not need to encode and
then forward a coded packet whenever it receives a packet from its
upstream node because its downstream node may overhear packets
from other neighbors. Consider a simple example in which a source S
multicasts two packets, P1 and P2, to two destination receivers, D1 and
D2 through a FN, F, as shown in Fig. 1. S transmits two coded packets,
P P+1 2 and P P+ 21 2 in sequence, which can be represented by the
corresponding coding vectors (1, 1) and (1, 2). Assume that F receives
both packets, and D1 and D2 overhear coded packets (1, 1) and (1, 2),
respectively. In fact, F only needs to generate one coded packet from
the received two packets, e.g. P P3 + 41 2, and forward it. D1 and D2 can
decode and obtain the original packets P1 and P2 after they receive
coded packet P P3 + 41 2 from F. However, F may not know that D1 and
D2 have overheard a packet from S as it has limited knowledge of the
reception status of D1 and D2 with regard to the two packets sent by S.
It is nontrivial for F to decide the number of coded packets it should
send and the time when to stop sending. Therefore, one challenge in
the NC protocol design is to address how many coded packets each FN
should send in order to guarantee all the multicast destination
receivers obtain enough packets to decode the original data. In
addition, how should the bandwidth heterogeneity of the paths from
the source to the different destination receivers be handled by the
multicast protocol? To deliver the benefits offered by intra-flow NC, a
practical protocol needs to address the above challenges.

Although various NC schemes have been studied under different
network settings, practical protocol design for reliable multicast with

NC in WMNs has received relatively little attention. MORE [11] and
Pacifier [12] are the two state-of-the-art intra-flow NC-based multicast
protocols with different selections of forwarding node topologies. Both
of them employ a transmission credit (TX_Credit) approach, in which
the source computes and assigns a TX_Credit to each FN based on the
periodical packet loss rate measurements of the links on the network.
The source transmits the coded packets from a data chunk, and the
TX_Credit values are carried in the packet header that indicates the
number of coded packets a FN should transmit upon receiving the
packet from its upstream node. An intermediate FN simply determines
whether and how many coded packets transmit to its downstream
nodes according to the TX_Credit assigned to it in the received packet.
The successful data delivery is verified through end-to-end acknowl-
edgements (ACKs). The source continues sending coded packets until it
receives the ACKs from all its multicast destination receivers. However,
with this approach, the FNs may transmit the packets much more than
necessary, significantly wasting wireless resources, because it is very
difficult to obtain the accurate estimation of the TX_Credit for each FN
in dynamic wireless environments, and the end-to-end ACKs may be
delayed or lost.

In this paper, we take a different approach, and propose a novel
intra-flow NC-based hop-by-hop reliable multicast protocol, termed
HopCaster, to achieve high-throughput over WMNs and solve the
bandwidth heterogeneity issue of multicast receivers. In contrast to the
existing NC-based multicast protocols, HopCaster completely elimi-
nates the need for estimating the TX_Credit, as well as simplifying
multicast management and congestion control. Moreover, a cross-layer
rate adaptation mechanism is proposed, which maximizes the multicast
throughput by dynamically adjusting the wireless transmission rate to
the changes in the receiver population and wireless channels during
multicast of a coded data chunk. The evaluation results show that
HopCaster achieves significant throughput gains compared to the state-
of-the-art NC-based multicast protocols.

The remainder of this paper is organized as follows. Related work is
reviewed in Section 2. In Section 3, we present the HopCaster protocol
design. Section 4 describes the cross-layer rate adaptation mechanism.
In Section 5 we show the evaluation results and performance compar-
ison of HopCaster with the existing NC-based multicast protocol. The
paper is concluded in Section 6.

2. Related work

Wireless network coding has been proposed to improve reliability
and throughput. Network coding schemes are classified as inter-flow
NC and intra-flow NC. With inter-flow NC [13–15], an intermediate
FN encodes data packets from different flows, and forwards the coded
packets. A receiver decodes the packets to obtain the flow of data
targeted to it using its knowledge of another flow. However, in order to
obtain inter-flow coding opportunities, the encoded flows need to pass
through a common FN with certain network topologies and specific
routing [15]. In addition, inter-flow NC typically requires that the
sending FN knows what data packets have been buffered or overheard
by each of the intended receivers in order to determine how to encode
the packets across the flows. This thereby leads to increased control
overhead. More recently, it is shown that the use of intra-flow NC with
random linear block codes [9,10] can address wireless multicast
challenges in an efficient and simple manner because it makes packet
forwarding and opportunistic overhearing more effective in WMNs by
random mixing of the packets of a flow at the FNs. In [16], a
retransmission mechanism with probabilistic network coding was
proposed, which used NC to encode multiple packets lost at multiple
destinations in one retransmission to effectively recover the lost
packets in a multiple-sender multiple-receiver wireless network sce-
narios. Additionally, a Stackelberg game model was formulated to
determine the optimal probability for using network coding to max-
imize the system performance [17].Fig. 1. A NC-based multicast example.
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There are only a few practical designs and performance studies of
intra-flow random NC-based multicast protocols. MORE [11] was the
first intra-flow NC-based protocol for reliable unicast and multicast over
WMNs, in which any node that overhears the transmission and is closer
to the destination may participate in forwarding the packets for a data
flow, forming a belt of forwarding nodes, instead of a path towards the
destination. The source sends random linear combinations of packets,
and a FN also encodes the received packets with random NC before
forwarding them. However, belt forwarding can be inefficient, especially
for multicast in which multiple belts overlap. Many nodes thus intend to
transmit causing a lot of collisions. Pacifier [12] improved upon MORE
by using a multicast tree instead of multiple belts for reliable multicast.
Only the nodes on the multicast tree perform random network coding of
incoming packets and forward the coded packets along the tree, which
reduces collisions. It has been shown that Pacifier is able to achieve
better performance than MORE [12].

In both MORE and Pacifier designs, the number of coded packets
that a FN transmits upon receiving a packet from its upstream node,
i.e. the TX_Credit, is determined based on periodical measurements of
the expected packet loss rate to the destinations, and carried in the
packet header by the source. Since the packet loss estimation only
represents the expected behavior, the TX_Credit cannot guarantee that
the destinations will always receive enough coded packets to decode the
original data. Therefore, the source keeps transmitting the coded
packets from a data chunk until it receives the acknowledgements
(ACKs) from all the targeted multicast receivers (a receiver sends the
end-to-end ACK after it receives enough coded packets to decode the
original data chunk). This is similar to the TCP end-to-end ACK
strategy in unicast. There is no cooperation among intermediate FNs
and no feedback by the FNs.

Because the source only reacts to the end-to-end ACKs and the FN
behavior is controlled via the TX_Credits estimated by the source, the
above schemes suffer several fundamental problems: (i) Inaccurate
estimation of transmission credits may cause injection of redundant
packets into the network. (ii) While an end-to-end ACK is being
propagated from a multicast destination back to the source, the source
will still transmit the coded packets from an already delivered data
chunk until receiving the ACK, and these packets will trigger the FNs to
send more coded packets, leading to bandwidth waste and more
interference. This becomes even worse if the end-to-end ACK gets
delayed or lost in the case of congestion and bad link quality. (iii) With
many multicast receivers sending acknowledgements to the source, it
may lead to ACK implosion [7]. (iv) The source needs to keep sending
the packets until the end-to-end ACK from the worst receiver is
received, thus it cannot handle heterogeneous receivers well. The
proposed HopCaster protocol in this paper uses hop-by-hop acknowl-
edgements and does not need TX_Credit estimation. We argue that
this approach works better with intra-flow random NC. The prelimin-
ary version of our work was presented at a conference [18]. This paper
substantially extends it with new figures and discussions. The multicast
rate adaptation mechanism is further described. In addition, we largely
restructured the manuscript with better presentation and detailed
discussions. Peer-to-peer file downloading has been widely studied
[19,20], in which peers contribute uploading bandwidth and exchange
file chunks. However in P2P systems, peers at the edge of the networks
form an application layer overlay with little knowledge of the under-
lying physical network topology. It is very difficult to take into account
the underlying wireless link characteristics such as shared medium and
overhearing, and achieve efficient network routing. In addition, most of
the P2P applications such as BitTorrent [21] employ TCP for reliable
transport between peers. TCP has well-known problems in wireless
networks.

Hop-by-hop transport schemes have recently been proposed for the
future Internet architectures and content centric networks [22–24].
However, those works mainly focused on the new Internet architecture
design and name-based routing protocols without network coding. To

the best of our knowledge, HopCaster is the first practical protocol that
integrates network coding and hop-to-hop transport for efficient
reliable multicast.

3. Hop-by-hop multicast with network coding

The HopCaster design addresses the weaknesses of previous intra-
flow NC-based multicast protocols such as Pacifier and MORE, in
which the forwarding is based on the TX_Credit that is determined by
the source, and the source stops sending based on the end-to-end
acknowledgements. HopCaster employs a hop-by-hop transport strat-
egy with network coding, and the FNs inform its upstream nodes to
stop sending.

3.1. Hop-by-hop coded data transmission

HopCaster builds a multicast tree and leverages it for opportunistic
overhearing and network coding in hop-by-hop transport. We will
describe the procedures to establish and maintain the tree in the next
subsection. As shown in Fig. 2, the solid lines represent the parent–
child links on the multicast tree, and the dashed lines indicate that a
node can overhear the packet transmissions from its other neighbors
such as grandparent, sibling, and child nodes, due to the broadcast
nature of wireless medium. We see that there are many opportunities
for a node to overhear on the multicast tree.

A large file is divided into multiple chunks at the source before
distribution reduce decoding delay at the receivers. A chunk is further
divided and encapsulated into k packets. Random linear block codes
[10] are applied across the packets belonging to a chunk to generate the
coded packets. A coded packet here is a random linear combination of
the k original packets with coefficients chosen from a Galois field of size
28.

HopCaster uses receiver-driven hop-by-hop transport. Multicast
users (receivers) may request a chunk of data by sending REQ
messages. The source broadcasts the coded packets of the requested
chunk as it is allowed to transmit by the media access control
mechanism along the multicast tree. Each transmitted packet is also
augmented with its chunk ID and the vector of the random coefficients
used to generate the packet.

A FN on the multicast tree receives or overhears coded packets not
only from its direct parent but also from any of its neighbors (grand-
parent, sibling, and even child nodes). After receiving a packet, the FN
checks whether the overheard packet is innovative, that is, whether it is
linearly independent with the packets obtained from previous trans-
missions by Gaussian elimination. An intermediate FN on the multicast

Fig. 2. Overhearing along a multicast tree.
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tree caches all the innovative packets of the chunk, and also performs
their random linear combinations and sends the re-encoded packets.
For random linear NC, the full rank is equal to the number of original
packets in the chunk k that the source intends to transmit to the
destinations. A node is able to decode the chunk to obtain the original
data once it receives the full rank.

In contrast to Pacifier and MORE, data transport in HopCaster
operates in a hop-by-hop manner. After an intermediate FN success-
fully overhears enough innovative packets of a chunk from all its
neighbors to reach the full rank, it performs the following operations.

1. The FN sends an ACK-REQ message to its parent. An ACK-REQ
message acknowledges that the node has received a data chunk and
indicates whether it requests the next chunk.

2. The ACK-REQ message is also used by the FN for controlling the
data to it. A FN requests the next chunk only if it has enough buffer
space to accept it. There is no need for additional mechanisms for
flow and congestion control, which simplifies network management.
Note that this is not the same as backpressure-based hop-by-hop
flow control [25], where backpressure between adjacent nodes is
used for a node to adjust its packet forwarding rate of a continuous
flow. In HopCaster, a parent node sends out the packets of a
requested chunk as fast as possible (since the requesting children
have enough buffer to accept it).

3. The FN becomes a new source for the chunk and is responsible for
delivering this chunk to their children.

The one-hop ACK-REQ message is sent unicast from a child to its
parent. The link layer such as that in IEEE 802.11 provides certain
reliability for unicast. In case an ACK-REQ is lost, it will be retrans-
mitted by the child. The one-hop ACK-REQ is far more reliable, and
incurs much less delay than the end-to-end ACK used in MORE and
Pacifier. Furthermore, in HopCaster, a FN transmits the coded packets
of a chunk by request from its children (receiver-driven), not triggered
by receiving a packet from its parent. The advantage is that even if the
one-hop ACK-REQs gets lost or delayed, a packet originating from a
parent node will not trigger more transmissions from the child nodes
(as the case in MORE and Pacifier).

If a chunk has been requested by its children, a FN can start
creating random linear combinations of the packets it has received so
far for this chunk and broadcasting them without waiting to reach the
full rank so as to keep the pipeline going and reduce delay. Random NC
removes transmission of duplicate copies of a packet over wireless
medium, and the probability that a node receives non-innovative
packets from its neighbors exponentially decreases with the code
length [10].

A parent node stops transmitting the data chunk once receiving the
acknowledgements from all its immediate children. It moves to the
next chunk if at least one of its children requests the next chunk. An
optimization here is that the parent node can immediately start
sending the next chunk as soon as it receives the first ACK for the
current chunk and a request for the next chunk from one of its children.
The parent node sends the coded packets from a list of requested
chunks in a round robin fashion. A chunk is removed from the list after
it is acknowledged by all the children. With the later scheduling
scheme, the children with good link quality can finish receiving the
whole file faster without waiting for their counterparts with bad link
quality. The parent stops transmitting after all the chunks are acknowl-
edged by all the children.

A FN is responsible for sending the chunks it has acknowledged to
its children. It keeps the received chunks of data in its buffer as long as
it is still in the multicast group and has the capacity available in its
buffer. It uses the Least-Recently-Used (LRU) policy for its buffer
replacement [26], instead of a traditional FIFO queue. The FN at the
upstream of a bottleneck link will inform its parent to stop sending a
chunk after it has received and cached the chunk. This hop-by-hop

control compensates bandwidth fluctuations, pushes data toward the
destinations as close as possible, and reduces the impact of multicast
receiver heterogeneity. A low-throughput lossy wireless link only
affects the receivers behind it. The cached copies may also be used
during network topology changes or by new receivers as described
below. In case all the data chunks in the buffer are in current use due to
very small buffer size, a node can simply delay sending its request to
the parent node until the buffer space becomes available.

The source and FNs on the multicast tree maintain a soft-state
chunk request and ACK table. The chunk request and ACK table
contain the information for which chunks requests are pending and
whether a REQ or an ACK-REQ message has been received from a child
node for a particular chunk. Every parent node knows the list of its
children through multicast tree construction.

3.2. Multicast tree establishment and request procedures

HopCaster uses a join scheme to build the multicast tree, and
populates and refreshes the chunk request and ACK table. The tree
roots at the source, and consists of all the shortest paths from the
source to the destination receivers. It is assumed that a unicast routing
protocol, such as OLSR [27] or HWMP [28,29], is used to construct
unicast paths in the network. Such a unicast routing protocol is needed
by other services anyway in WMNs. Our HopCaster protocol is
essentially implemented as a shim layer on top of layer 3.

A destination receiver interested in a data file sends a request
(REQ) message to its parent on the path toward the root of the tree, i.e.
the source. The REQ message contains a chunk ACK field (BAF) that is
a bitmap to indicate which chunks of the file have been successfully
received by the sending node. The REQ message is processed hop-by-
hop along the path toward the source. If a parent node has cached the
chunks requested by the children (the corresponding bits in the BAF
bitmap field have not been set yet), the requested chunks will be served
from this parent node to save bandwidth and reduce delay. The parent
node updates the BAF in the REQ message to include its locally cached
chunks. It then sends the REQ message to its parent. If an intermediate
node can serve all the chunks requested by its children, it does not have
to forward the REQ message upstream to its parent node. Otherwise
the REQ message propagates toward the source. Note that with
HopCaster, a new receiver is efficiently served by the closest node that
has cached the requested data, in contrast to MORE and Pacifier in
which a joining node will always be served from the source.
Furthermore, when a new REQ is received from a child, a parent
checks whether there is a match with one of the previous requests from
another child. If so, the parent is already in the process of obtaining the
chunks requested by this new child. It will not forward this new REQ
message and simply waits for the data.

The states in the chunk request and ACK table of the source and
FNs are soft and are discarded after a timeout. To provide reliable
delivery, a destination receiver is responsible for sending its request
periodically toward the source to refresh the state if it still wants the
data. For bandwidth efficiency, REQ messages are combined with
chunk ACK messages, i.e. using ACK-REQ messages, if possible.

When changes in network topology or link breaks are detected, the
path between the destination and the source is repaired or recon-
structed by the underlying unicast routing protocol. To speed up the
multicast recovery process, the affected nodes are informed of the link
break or routing change events. If a node changes its parent node
towards the source, the node sends a REQ message to its new parent
node on the reconstructed path toward the source. The REQ message
contains the BAF to indicate its data delivery progress, i.e. which
chunks it has successfully received. If a node loses a child node due to a
routing change, it removes the state for this child. In summary,
compared to MORE and Pacifier, HopCaster removes the need to
estimate the value of TX_Credit for each FN, and avoids redundant
packet transmissions due to inaccurate TX_Credit estimation. It
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handles the heterogeneous receivers better by allowing a FN at the
upstream of a bottleneck link to buffer data for its children. The hop-
by-hop ACK and request mechanism reduces the feedback delay and
alleviates redundant packets injected into the network.

4. Multicast rate adaptation

Existing radios such as IEEE 802.11 [30] support multi-rate
capability at the physical (PHY) layer. Different PHY layer transmission
modes use different Modulation and Channel Coding (MCS) schemes,
and result in different transmission data rates. It is known that a signal
transmitted with a higher rate PHY mode requires a higher Signal-to-
Noise Ratio (SNR) at the receiver to successfully decode because it uses
a more efficient but less robust modulation scheme along with less
channel coding overhead. In other words, at a certain received SNR
level, a PHY transmission mode with a higher data rate yields a higher
Bit Error Rate (BER). This means that, when the wireless channel is in
a good condition, a high data rate transmission mode is more desirable
because the receiver will likely receive the signal with a SNR value high
enough to correctly decode the signal, and the high data transmission
rate will improve the throughput. On the other hand, when the channel
is in a bad condition, the SNR at the receiver is expected to be low.
Sending the signal using a high data rate transmission mode would
most probably lead to errors in decoding at the receiver. A lower rate
but more robust mode is thus needed to transmit the signal. Therefore
a rate adaptation scheme is desirable, which dynamically adjusts the
PHY transmission mode depending on channel conditions in order to
improve throughput.

At each forwarding hop in multicast, a parent node may have
multiple children. The children with good channel conditions and more
overhearing opportunities will obtain sufficient packets and complete
its receiving process of a data chunk faster than their poorly connected
counterparts. Thus, the population of the children will change during
the multicast of a data chunk. A multicast sender can thus adapt its
data rate used for transmitting coded packets to the changing popula-
tion of multicast receivers and their current channel conditions so as to
maximize the multicast throughput. However in the existing NC-based
multicast protocols, the sender at each hop transmission simply
chooses a low robust rate to broadcast the coded packets to multiple
receivers, which is not optimal.

Most rate adaptation protocols in the literature [31,32] deal with
unicast rather than multicast. Channel conditions are estimated by
measuring the received signal strength (RSS) of a feedback message
such as ACKs in the MAC layer. However, the IEEE 802.11 standard
does not provide feedback messages for multicast packets in the MAC
layer. A rate adaptive multicast protocol [33] was proposed, in which
some multicast receivers sent acknowledgements to the sender.
However, this MAC layer solution requires major MAC and PHY layer
changes. Furthermore, it does not consider the changes in the popula-
tion of receiving nodes in multicast.

The hop-by-hop nature of HopCaster, in which the source and FNs
keep track of their children, motivates a cross-layer rate adaptation
mechanism to assist HopCaster in determining optimal transmission
rate at the physical layer. In this section, we propose a new multicast
rate adaptation protocol that leverages the hop-by-hop ACK-REQ
messages at the transport layer and takes into consideration the
changes in receiver population during multicast.

In our proposed protocol, a sending node selects a PHY mode for a
packet transmission to maximize the multicast throughput for its
intended children, and adapts to the changing population and channel
conditions of its children. Given a radio technology and PHY mode, the
packet loss probability is estimated based on channel SNR γ. Just as an
example, DPSK, QPSK and CCK modulations with different channel
coding schemes are used in IEEE 802.11b PHY transmission modes
m = 1, 2, 3 and 4 to get transmission rates of 1 Mbps, 2 Mbps,
5.5 Mbps, and 11 Mbps, respectively. The packet loss probability is

calculated as [31],

P L γ m P γ P L γ( , , ) = 1 − [1 − (24, )] × [1 − ( , )]e e e
m1 (1)

where P γ(24, )e
1 is the error probability of the Physical Layer

Convergence Procedure (PLCP) sublayer header that is 24-byte long
and always transmitted with PHY mode 1. P L γ( , )e

m is the error
probability for the L-byte data payload and MAC header transmitted
with PHY mode m that can be expressed as,

P L γ P γ( , ) = 1 − (1 − ( ))e
m

b
m L8 (2)

where P γ( )b
m is the average BER corresponding to SNR γ under PHY

mode m.
From Eq. (1), it is clear that the packet error probability depends on

the PHY transmission mode, the packet size, and the channel SNR γ.
Note that this is true for other radios such as 802.11a/g/n/ac even if
they use a more complex PHY modulation, channel coding, and
antenna techniques in different PHY modes. In general, a relationship
database between the packet loss rate and the used PHY mode under
different packet sizes and channel SNR values can be built through
modeling or offline measurements.

Different children nodes in multicast experience different channels
and receive signals with different SNR values from the parent node.
Given the received SNR, γ ,n for a receiving node n n N( = 1, 2, ..., ), the
value of the packet loss rate, P L γ m( , , )e n n, , can be derived for each PHY
mode m using the relationship database. Suppose a multicast sender
currently has N receiving children nodes, the objective is to find the
best PHY mode for the multicast sender to achieve the overall
maximum throughput among all its intended receiving nodes. The
objective function is formulated as,

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∑ r m P L γ margmax ( )[1 − ( , , )]

m n

N

e n n
=1

,
(3)

where r(m) is the data rate for PHY mode m used by the multicast
sender.

Each child node on the multicast tree measures its channel SNR for
the packets received from its parent node, and periodically feed the
channel SNR measurements back to its parent node. A parent node in
HopCaster knows which children still need the coded packets for a
particular chunk (based on the chunk request and ACK table). Thus the
parent node estimates the objective function and selects the best PHY
mode m when transmitting a packet to its children. The SNR reporting
messages are combined with the ACK-REQ messages if possible to
reduce overhead. Once the parent node receives an ACK-REQ for a
chunk from one of its children, the multicast rate adaptation mechan-
ism is informed of this event, and it readjusts its PHY transmission
mode to obtain the maximal multicast throughput based on the link
qualities of the children that have not completed reception of this
chunk.

5. Performance evaluation

To evaluate the performance of HopCaster, we simulate both
HopCaster and Pacifier with NS-2 [34], and compare their performance
in various settings. We choose Pacifier, instead of MORE, for perfor-
mance comparison with HopCaster because it is reported in [12] that
Pacifier achieves better performance than MORE. We performed our
evaluation under many different network topologies and parameter
settings. We report results with the following settings. We have a total
of 50 nodes. We generate 10 scenarios, each scenario corresponding to
a random topology by placing 50 nodes randomly in a 1000 × 1000
square meter area. There is one data source node and 9 multicast
destination receivers requesting the file. The source and destinations
are chosen randomly in each scenario. Note that a node could be
selected as a destination and a FN at the same time. Furthermore, we
simulate a realistic wireless channel with a shadowing propagation
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model [35] and set the maximum radio transmission range to be
276 m.

In the simulations, each chunk is divided into 32 packets with a
1460 byte payload in each packet. For Pacifier, we follow the imple-
mentation in [12]. To compute TX_Credit required by Pacifier, nodes
periodically exchange hello messages. By keeping track of the lost hello
messages, the loss probabilities of all the links in the network are
calculated, and then the TX_Credits are estimated. Next we present
our simulation results for the cases with static and dynamic multicast
trees, and discuss the performance gains attained by HopCaster.

5.1. Static multicast experiments

In these experiments, the multicast tree is established at the
beginning of the experiments, and no new receiver requests to join
the tree for receiving the data during the course of data transmission.
The dynamic cases will be investigated later. Fig. 3 shows the average
throughput of Pacifier and HopCaster in the 10 different network
scenarios described above, in addition to the overall average through-
put over all the scenarios. Here the average throughput for a scenario is
obtained by averaging the throughput values over all destination
receivers in the scenario. The transmission data rate in those experi-
ments is set to 2 Mbps. As shown in the figure, HopCaster achieves a
higher throughput compared to Pacifier in all scenarios. The gain
ranges from 6% (scenario 3) to 29% (scenario 9), and the average is
12%. The higher throughput of HopCaster results from injecting fewer
NC-coded packets into the network, reducing the total number of
required transmissions. This is further clarified in Fig. 4, which shows
the number of transmissions by HopCaster and Pacifier in all the above
scenarios. Each bar in the graph is divided into two parts: the bottom
part corresponds to the number of coded data packet transmissions
and the top part corresponds to the number of ACK packet transmis-
sions. Note that in HopCaster, the ACKs are hop-by-hop, and in
Pacifier the ACKs are end-to-end. HopCaster results in sending fewer
data packets and more ACK packets than Pacifier. The hop-by-hop
ACKs in HopCaster significantly reduce the number of redundant data
packets injected into the network. Thus, HopCaster has less total
number of packet transmissions (data and ACK) in all scenarios except
scenario 4 (both protocols have almost the same number of transmis-
sions). In addition, the channel time of sending a data packet is much
larger than that of an ACK packet because the ACK packet is much
smaller. Fig. 5 shows the redundancy in both protocols. Redundancy is
computed as the total number of bytes in all of the transmitted packets
(data and ACK) divided by the actual file size in bytes. HopCaster
results in much less redundancy over all scenarios.

5.2. Dynamic multicast experiments

In this subsection, we consider the dynamic multicast cases, in
which new receivers request to join the multicast for receiving the data
during the course of transmission. Specifically, the simulation starts
with one source and 8 receivers, i.e., one of the 9 receivers in the
previous experiments will be idle at the beginning of a dynamic
multicast experiment. At some point in time, that node will request
to join the multicast tree. For HopCaster, the joining node will use the
request mechanism described in Section 3.2. For Pacifier, as described
in [12], the joining node will send a join message toward the source
(the root of the tree) that in turn will register the joining node as a new
multicast receiver. We compare the new receiver's throughput under
HopCaster and Pacifier in the above 10 different network scenarios. In
each of the scenarios, the new receiver and the time of the request will
be chosen randomly (the same randomly chosen values will be used for
both HopCaster and Pacifier in this experiment). Fig. 6 shows that the
new receiver's throughput under HopCaster is much greater than that
with Pacifier. The reason is that in HopCaster, the new receiver is
immediately served from the closest upstream node in the multicast
tree, while in Pacifier, only the source can serve a new node since the
source needs to compute the TX_Credit for the FNs to send the coded
packets to the newcomer. This demonstrates a desirable feature of the
hop-by-hop transport approach, which over time, the data will be
moved deeper in the multicast tree and closer to the destinations. A
new receiver will be served by the closest node that has cached the
requested data.
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Fig. 3. Average throughput of the proposed HopCaster and the existing Pacifier under
10 different scenarios.

Fig. 4. The number of transmissions (ACK and data packets) of the proposed HopCaster
and the existing Pacifier under 10 different scenarios.

Fig. 5. The number of redundant bytes that are injected into the network by the
proposed HopCaster and the existing Pacifier in 10 different scenarios.
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5.3. Impact of multicast rate adaptation

In this subsection we demonstrate the throughput gain provided by
the multicast rate adaptation mechanism described in Section 4. In our
simulations, whenever a parent node is about to multicast a packet, it
evaluates the optimal data rate according to Eq. (3) for m = 1, 2, 3, 4
that correspond to data rates of 1 Mbps, 2 Mbps, 5.5 Mbps, and
11 Mbps, respectively. Eq. (3) is evaluated only for the child nodes
that have not acknowledged the current chunk. For comparison, Fig. 7
illustrates the average throughput values for the above 10 network
scenarios using the adaptive data rates as well as 2 fixed data rates,
2 Mbps and 11 Mbps. The performance of both HopCaster and Pacifier
degrades at 11 Mbps compared to 2 Mbps. This is because of high
packet loss rate at 11 Mbps, which requires more transmissions in
sending data to the destinations. Furthermore, the ACK-REQ messages
may be lost and retransmitted, leading to injection of more redundant
packets into the network before switching to the next chunk. Note that
the proposed cross-layer multicast rate adaptation mechanism greatly
improves the throughput in all the experiment scenarios. The reason is
that the rate adaptation mechanism enables a parent node to estimate
the current conditions of the wireless links to its intended children.
Therefore, it is able to dynamically adjust the data transmission rate to
maximize the overall throughput across all its intended children.

6. Conclusions

There are many challenges in designing an intra-flow NC based

protocol for efficient reliable multicast over WMNs, including how
many coded packets a FN should send and how to handle the
bandwidth heterogeneity of multicast receivers. In this paper, we have
designed HopCaster, a novel reliable multicast protocol that incorpo-
rates intra-flow NC with hop-by-hop transport. Compared to the
existing intra-flow NC-based multicast protocols, HopCaster eliminates
the need for estimating the number of coded packets each FN should
send, avoids redundant transmissions, as well as simplifies multicast
management and congestion control. We have also proposed a cross-
layer rate adaptation mechanism that enables HopCaster to optimize
data transmission rate in hop-by-hop multicast by taking into account
the changing population of multicast receivers and the wireless channel
variations. Our simulations show that compared to Pacifier, a state-of-
the-art intra-flow NC-based multicast protocol, HopCaster greatly
reduces the number of required transmissions over the wireless net-
work to deliver multicast data, and achieves higher throughput.
Furthermore, we show that the advantages of HopCaster are more
prominent in the situation that a new node dynamically requests
joining the multicast.
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