1,589 research outputs found
Development of a hard X-ray split-and-delay line and performance simulations for two-color pump-probe experiments at the European XFEL
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 89, 063121 (2018) and may be found at https://doi.org/10.1063/1.5027071.A hard X-ray Split-and-Delay Line (SDL) under construction for the Materials Imaging and Dynamics station at the European X-Ray Free-Electron Laser (XFEL) is presented. This device aims at providing pairs of X-ray pulses with a variable time delay ranging from −10 ps to 800 ps in a photon energy range from 5 to 10 keV for photon correlation and X-ray pump-probe experiments. A custom designed mechanical motion system including active feedback control ensures that the high demands for stability and accuracy can be met and the design goals achieved. Using special radiation configurations of the European XFEL’s SASE-2 undulator (SASE: Self-Amplified Spontaneous Emission), two-color hard x-ray pump-probe schemes with varying photon energy separations have been proposed. Simulations indicate that more than 109 photons on the sample per pulse-pair and up to about 10% photon energy separation can be achieved in the hard X-ray region using the SDL.BMBF, 05K13KT4, Verbundprojekt FSP 302 - Freie-Elektronen-Laser: Nanoskopische Systeme. Teilprojekt 1: Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and DynamicsBMBF, 05K16BC1, Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and Dynamic
Entwicklung von Bekämpfungsstrategien für Meloidogyne halpa und Pratylenchus spp. im ökologischen Anbau von Möhren und Zwiebeln
Nematoden der Gattungen Meloidogyne und Pratylenchus zählen zu den Hauptschaderregern im ökologischen Anbau von Möhren und Zwiebeln. Typische Symptome sind geringes Wachstum, Deformationen der Ernteorgane, verstärkte Seitenwurzelbildung sowie Wurzelgallen (Meloidogyne) bzw. Wurzelläsionen (Pratylenchus). Beide Nematodengattungen haben ein sehr weites Wirtspflanzenspektrum und treten häufig gemeinsam auf. In dem vorliegenden Forschungsvorhaben werden Bekämpfungsstrategien für Meloidogyne und Pratylenchus unter praxisüblichen Bedingungen entwickelt
Design and throughput simulations of a hard x-ray split and delay line for the MID station at the European XFEL
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Conference Proceedings 1741, 030010 (2016) and may be found at https://doi.org/10.1063/1.4952833.A hard X-ray Split and Delay Line (SDL) under development for the Materials Imaging and Dynamics (MID) station at the European X-Ray Free-Electron Laser (XFEL.EU) is presented. This device will provide pairs of X-ray pulses with a variable time delay ranging from −10 ps to 800 ps in a photon energy range from 5 to 10 keV. Throughput simulations in the SASE case indicate a total transmission of 1.1% or 3.5% depending on the operation mode. In the self-seeded case of XFEL.EU operation simulations indicate that the transmission can be improved to more than 11%.BMBF, 05K13KT4, Verbundprojekt FSP 302 - Freie-Elektronen-Laser: Nanoskopische Systeme. Teilprojekt 1: Split-and-Delay Instrument für die European XFEL Beamline Materials Imaging and Dynamic
The 125th anniversary of the first postulation of the soil origin of endophytic bacteria – a tribute to M.L.V. Galippe
In both managed and natural ecosystems, a wide range of various non-nodulating bacteria can thrive as endophytes in the plant interior, and some can be beneficial to their hosts (Hallmann and Berg 2007; Reinhold-Hurek and Hurek 2011). Colonizationmechanisms, the ecology and functioning of these endophytic bacteria as well as their interactions with plants have been investigated (Hardoim et al. 2008; Compant et al. 2010). Although the source of colonization can also be the spermosphere, anthosphere, caulosphere, and the phyllosphere,most endophytic bacteria are derived from the soil environment (Hallmann and Berg 2007; Compant et al. 2010)
Ring closing reaction in diarylethene captured by femtosecond electron crystallography
The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials
The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program
Papers on the ANTARES multi-messenger program, prepared for the 35th
International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the
ANTARES Collaboratio
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)
The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics
The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration
Papers on the searches for dark matter and exotics, neutrino oscillations and
detector calibration, prepared for the 35th International Cosmic Ray Conference
(ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio
Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy
Background and aim There is currently a gap of
knowledge regarding whether some beneficial bacteria
isolated from desert soils can colonize epi- and
endophytically plants of temperate regions. In this
study, the early steps of the colonization process of
one of these bacteria, Saccharothrix algeriensis NRRL
B-24137, was studied on grapevine roots to determine
if this beneficial strain can colonize a non-natural host
plant. An improved method of fluorescence in situ
hybridization (FISH), the double labeling of oligonucleotide
probes (DOPE)-FISH technique was used to
visualize the colonization behavior of such bacteria as well as to determine if the method could be used to
track microbes on and inside plants.
Methods A probe specific to Saccharothrix spp. was
firstly designed. Visualization of the colonization behavior
of S. algeriensis NRRL B-24137 on and inside
roots of grapevine plants was then carried out with
DOPE-FISH microscopy.
Results The results showed that 10 days after inoculation,
the strain could colonize the root hair zone, root
elongation zone, as well as root emergence sites by
establishing different forms of bacterial structures as
revealed by the DOPE-FISH technique. Further observations
showed that the strain could be also endophytic
inside the endorhiza of grapevine plants.
Conclusions Taking into account the natural niches of
this beneficial strain, this study exemplifies that, in
spite of its isolation from desert soil, the strain can
establish populations as well as subpopulations on and
inside grapevine plants and that the DOPE-FISH tool
can allow to detect it
- …
