4,726 research outputs found

    A simple background-independent hamiltonian quantum model

    Full text link
    We study formulation and probabilistic interpretation of a simple general-relativistic hamiltonian quantum system. The system has no unitary evolution in background time. The quantum theory yields transition probabilities between measurable quantities (partial observables). These converge to the classical predictions in the 0\hbar\to 0 limit. Our main tool is the kernel of the projector on the solutions of Wheeler-deWitt equation, which we analyze in detail. It is a real quantity, which can be seen as a propagator that propagates "forward" as well as "backward" in a local parameter time. Individual quantum states, on the other hand, may contain only "forward propagating" components. The analysis sheds some light on the interpretation of background independent transition amplitudes in quantum gravity

    Simplicial minisuperspace models in the presence of a massive scalar field with arbitrary scalar coupling

    Get PDF
    We extend previous simplicial minisuperspace models to account for arbitrary scalar coupling \eta R\phi^2.Comment: 24 pages and 9 figures. Accepted for publication by Classical and Quantum Gravit

    Global phase time and path integral for the Kantowski--Sachs anisotropic univers

    Full text link
    The action functional of the anisotropic Kantowski--Sachs cosmological model is turned into that of an ordinary gauge system. Then a global phase time is identified for the model by imposing canonical gauge conditions, and the quantum transition amplitude is obtained by means of the usual path integral procedure of Fadeev and Popov.Comment: 11 page

    Creation of unstable particles and decoherence in semiclassical cosmology

    Get PDF
    We consider a simple cosmological model in order to show the importance of unstable particle creation for the validity of the semiclassical approximation. Using the mathematical structure of rigged Hilbert spaces we show that particle creation is the seed of decoherence which enables the quantum to classical transition.Comment: latex file; 18 pages. Some changes have been added. To appear in Gen. Rel. and Gra

    Spacetime states and covariant quantum theory

    Full text link
    In it's usual presentation, classical mechanics appears to give time a very special role. But it is well known that mechanics can be formulated so as to treat the time variable on the same footing as the other variables in the extended configuration space. Such covariant formulations are natural for relativistic gravitational systems, where general covariance conflicts with the notion of a preferred physical-time variable. The standard presentation of quantum mechanics, in turns, gives again time a very special role, raising well known difficulties for quantum gravity. Is there a covariant form of (canonical) quantum mechanics? We observe that the preferred role of time in quantum theory is the consequence of an idealization: that measurements are instantaneous. Canonical quantum theory can be given a covariant form by dropping this idealization. States prepared by non-instantaneous measurements are described by "spacetime smeared states". The theory can be formulated in terms of these states, without making any reference to a special time variable. The quantum dynamics is expressed in terms of the propagator, an object covariantly defined on the extended configuration space.Comment: 20 pages, no figures. Revision: minor corrections and references adde

    On the interpretation of time-reparametrization-invariant quantum mechanics

    Get PDF
    The classical and quantum dynamics of simple time-reparametrization- invariant models containing two degrees of freedom are studied in detail. Elimination of one ``clock'' variable through the Hamiltonian constraint leads to a description of time evolution for the remaining variable which is essentially equivalent to the standard quantum mechanics of an unconstrained system. In contrast to a similar proposal of Rovelli, evolution is with respect to the geometrical proper time, and the Heisenberg equation of motion is exact. The possibility of a ``test clock'', which would reveal time evolution while contributing negligibly to the Hamiltonian constraint is examined, and found to be viable in the semiclassical limit of large quantum numbers.Comment: 13 pages, set in REVTeX. One figure available by FAX from [email protected]

    Quantum cosmology with a curvature squared action

    Get PDF
    The correct quantum description for a curvature squared term in the action can be obtained by casting the action in the canonical form with the introduction of a variable which is the negative of the first derivative of the field variable appearing in the action, only after removing the total derivative terms from the action. We present the Wheeler-DeWitt equation and obtain the expression for the probability density and current density from the equation of continuity. Furthermore, in the weak energy limit we obtain the classical Einstein equation. Finally we present a solution of the wave equation.Comment: 8 pages, revte

    Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory

    Get PDF
    We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem and the problem of time in reparametrization invariant theories as for example in canonical quantum gravity. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem.Comment: 23 pages, Few changes and added references in v

    A Closed Contour of Integration in Regge Calculus

    Get PDF
    The analytic structure of the Regge action on a cone in dd dimensions over a boundary of arbitrary topology is determined in simplicial minisuperspace. The minisuperspace is defined by the assignment of a single internal edge length to all 1-simplices emanating from the cone vertex, and a single boundary edge length to all 1-simplices lying on the boundary. The Regge action is analyzed in the space of complex edge lengths, and it is shown that there are three finite branch points in this complex plane. A closed contour of integration encircling the branch points is shown to yield a convergent real wave function. This closed contour can be deformed to a steepest descent contour for all sizes of the bounding universe. In general, the contour yields an oscillating wave function for universes of size greater than a critical value which depends on the topology of the bounding universe. For values less than the critical value the wave function exhibits exponential behaviour. It is shown that the critical value is positive for spherical topology in arbitrary dimensions. In three dimensions we compute the critical value for a boundary universe of arbitrary genus, while in four and five dimensions we study examples of product manifolds and connected sums.Comment: 16 pages, Latex, To appear in Gen. Rel. Gra

    Effective Theories of Coupled Classical and Quantum Variables from Decoherent Histories: A New Approach to the Backreaction Problem

    Full text link
    We use the decoherent histories approach to quantum theory to derive the form of an effective theory describing the coupling of classical and quantum variables. The derivation is carried out for a system consisting of a large particle coupled to a small particle with the important additional feature that the large particle is also coupled to a thermal environment producing the decoherence necessary for classicality. The effective theory is obtained by tracing out both the environment and the small particle variables. It consists of a formula for the probabilities of a set of histories of the large particle, and depends on the dynamics and initial quantum state of the small particle. It has the form of an almost classical particle coupled to a stochastic variable whose probabilities are determined by a formula very similar to that given by quantum measurement theory for continuous measurements of the small particle's position. The effective theory gives intuitively sensible answers when the small particle is in a superposition of localized states.Comment: 27 pages, plain Te
    corecore