54 research outputs found

    Insertion of Lithium Ions into TiO\u3csub\u3e2\u3c/sub\u3e (rutile) Crystals: An Electron Paramagnetic Resonance Study of the Li-associated Ti\u3csup\u3e3+\u3c/sup\u3e Small Polaron

    Get PDF
    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify a Ti3+-Li+ complex in TiO2 crystals having the rutile structure. This defect consists of an interstitial Li+ ion adjacent to a substitutional Ti3+ ion (the unpaired electron on the Ti3+ ion provides charge compensation for the Li+ ion). The neutral Ti3+-Li+ complex is best described as a donor-bound small polaron and is similar in structure to the recently reported neutral fluorine and hydrogen donors in TiO2 (rutile). Lithium ions are diffused into the crystals at temperatures near 450 °C. Following the diffusion, an EPR spectrum containing groups of four closely spaced lines is observed at 36 K without laser illumination. ENDOR data verify that the four lines within each group are due to a weak hyperfine interaction with one lithium nucleus. Spin-Hamiltonian parameters are obtained from the angular dependence of the EPR spectra. Principal values are 1.9688, 1.9204, and 1.9323 for the g matrix and –2.14, –2.20, and +3.44 MHz for the 7Li hyperfine matrix

    Interstitial Silicon Ions in Rutile TiO\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile TiO2. The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in TiO2. Principal g values of this new S=1/2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [¯110],[001], and [110] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon ions are present in the TiO2 crystals as unintentional impurities. Principal values for the larger of the two Si hyperfine interactions are 91.4, 95.4, and 316.4 MHz with principal axes also along the [¯110],[001], and [110] directions. The model for the defect consists of two adjacent Si ions, one at a tetrahedral interstitial site and the other occupying a Ti site. Together, they form a neutral nonparamagnetic [Siint−SiTi]0 complex. When a crystal is illuminated below 40 K with 442-nm laser light, holes are trapped by these silicon complexes and form paramagnetic [Siint−SiTi]+ defects, while electrons are trapped at oxygen vacancies. Thermal anneal results show that the [Siint−SiTi]+ EPR signal disappears in two steps, coinciding with the release of electrons from neutral oxygen vacancies and singly ionized oxygen vacancies. These released electrons recombine with the holes trapped at the silicon complexes

    Gallium Vacancies in β-Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e Crystals

    Get PDF
    The gallium vacancy, an intrinsic acceptor, is identified in β-Ga2O3 using electron paramagnetic resonance (EPR). Spectra from doubly ionized (V2−Ga) and singly ionized (V−Ga) gallium vacancies are observed at room temperature, without photoexcitation, after an irradiation with high-energy neutrons. The V2−Ga centers (with S = 1/2) have a slight angular variation due to a small anisotropy in the g matrix (principal values are 2.0034, 2.0097, and 2.0322). The V2−Ga centers also exhibit a resolved hyperfine structure due to equal and nearly isotropic interactions with the 69,71Ga nuclei at two Ga sites (the hyperfine parameters are 1.28 and 1.63 mT for the 69Ga and 71Ga nuclei, respectively, when the field is along the a direction). Based on these g-matrix and hyperfine results, the model for the ground state of the doubly ionized vacancy (V2−Ga) has a hole localized on one threefold-coordinated oxygen ion. The vacancy is located at one of the three neighboring gallium sites, and the remaining two gallium neighbors are responsible for the equal hyperfine interactions. The singly ionized (V−Ga) gallium vacancies are also paramagnetic. In this latter acceptor, the two holes are localized on separate oxygen ions adjacent to one gallium vacancy. Their spins align parallel to give a triplet S = 1 EPR spectrum with resolved hyperfine structure from interactions with gallium neighbors

    Neutral Nitrogen Acceptors in ZnO: The \u3csup\u3e67\u3c/sup\u3eZn Hyperfine Interactions

    Get PDF
    Electron paramagnetic resonance (EPR) is used to characterize the 67Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N−) initially present in the crystal are converted to their paramagnetic neutral charge state (N0) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N0 acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the 67Zn hyperfine parameters are A‖ = 37.0 MHz and A⊥ = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the 67Zn parameters are A1 = 14.5 MHz, A2 = 18.3 MHz, and A3 = 20.5 MHz with A3 along a [10ˉ10] direction (i.e., in the basal plane toward the nitrogen) and A2 along the [0001] direction. These 67Zn results and the related 14N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO

    Lithium and Gallium Vacancies in LiGaO\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    Lithium gallate (LiGaO2) is a wide-band-gap semiconductor with an optical gap greater than 5.3 eV. When alloyed with ZnO, this material offers broad functionality for optical devices that generate, detect, and process light across much of the ultraviolet spectral region. In the present paper, electron paramagnetic resonance (EPR) is used to identify and characterize neutral lithium vacancies (V0Li) and doubly ionized gallium vacancies (V2−Ga) in LiGaO2 crystals. These S = 1/2 native defects are examples of acceptor-bound small polarons, where the unpaired spin (i.e., the hole) is localized on one oxygen ion adjacent to the vacancy. Singly ionized lithium vacancies (V−Li) are present in as-grown crystals and are converted to their paramagnetic state by above-band-gap photons (x rays are used in this study). Because there are very few gallium vacancies in as-grown crystals, a post-growth irradiation with high-energy electrons is used to produce the doubly ionized gallium vacancies (V2−Ga). The EPR spectra allow us to establish detailed models for the two paramagnetic vacancies. Anisotropy in their g matrices is used to identify which of the oxygen ions adjacent to the vacancy has trapped the hole. Both spectra also have resolved structure due to hyperfine interactions with 69Ga and 71Ga nuclei. The V0Li acceptor has nearly equal interactions with Ga nuclei at two Ga sites adjacent to the trapped hole, whereas the V2−Ga acceptor has an interaction with Ga nuclei at only one adjacent Ga site

    Hydrogen Donors and Ti\u3csup\u3e3+\u3c/sup\u3e ions in reduced TiO\u3csub\u3e2\u3c/sub\u3e crystals

    Get PDF
    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to identify and characterize the neutral hydrogen donor in TiO2 crystals having the rutile structure. These spectra are best observed near 5 K. The neutral donors are present without photoexcitation in crystals that have been slightly reduced at high temperature in a nitrogen atmosphere. The same defects can be photoinduced at low temperature in oxidized crystals. The neutral hydrogen donor in this lattice consists of a substitutional Ti3+ ion adjacent to a substitutional OH– molecular ion. The axis of the OH– molecule lies in the basal plane with the hydrogen ion extending out from the oxygen in a direction perpendicular to the Ti-O bonds. Spin-Hamiltonian parameters are obtained from the angular dependence of the EPR and ENDOR spectra (principal values are 1.9732, 1.9765, and 1.9405 for the g matrix and –0.401, + 0.616, and –0.338 MHz for the 1H hyperfine matrix). The principal axis associated with the + 0.616 MHz principal value is in the basal plane 22.9° from a [110] direction and the principal axis associated with the –0.338 MHz principal value is along the [001] direction. Our results show that interstitial Ti3+ ions are not the dominant shallow donors in slightly reduced TiO2 (rutile) crystals

    Oxygen Vacancies in LiAlO\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    Singly ionized oxygen vacancies are produced in LiAlO2 crystals by direct displacement events during a neutron irradiation. These vacancies, with one trapped electron, are referred to as V+O centers. They are identified and characterized using electron paramagnetic resonance (EPR) and optical absorption. The EPR spectrum from the V+O centers is best monitored near 100 K with low microwave power. When the magnetic field is along the [001] direction, this spectrum has a g value of 2.0030 and well-resolved hyperfine interactions of 310 and 240 MHz with the two 27Al nuclei that are adjacent to the oxygen vacancy. A second EPR spectrum, also showing hyperfine interactions with two 27Al nuclei, is attributed to a metastable state of the V+O center. An optical absorption band peaking near 238 nm is assigned to V+O centers. Bleaching light from a Hg lamp converts a portion of the V+O centers to V0O centers (these latter centers are oxygen vacancies with two trapped electrons). The V0O centers have an absorption band peaking near 272 nm, a photoluminescence band peaking near 416 nm, and a photoluminescence excitation band peaking near 277 nm. Besides the oxygen-vacancy EPR spectra, a holelike spectrum with a resolved, but smaller, hyperfine interaction with one 27Al nucleus is present in LiAlO2 after the neutron irradiation. This spectrum is tentatively assigned to doubly ionized aluminum vacancies

    Self-trapped Holes in β-Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e Crystals

    Get PDF
    We have experimentally observed self-trapped holes (STHs) in a β-Ga2O3 crystal using electron paramagnetic resonance (EPR). These STHs are an intrinsic defect in this wide-band-gap semiconductor and may serve as a significant deterrent to producing usable p-type material. In our study, an as-grown undoped n-type β-Ga2O3 crystal was initially irradiated near room temperature with high-energy neutrons. This produced gallium vacancies (acceptors) and lowered the Fermi level. The STHs (i.e., small polarons) were then formed during a subsequent irradiation at 77 K with x rays. Warming the crystal above 90 K destroyed the STHs. This low thermal stability is a strong indicator that the STH is the correct assignment for these new defects. The S = 1/2 EPR spectrum from the STHs is easily observed near 30 K. A holelike angular dependence of the g matrix (the principal values are 2.0026, 2.0072, and 2.0461) suggests that the defect\u27s unpaired spin is localized on one oxygen ion in a nonbonding p orbital aligned near the a direction in the crystal. The EPR spectrum also has resolved hyperfine structure due to equal and nearly isotropic interactions with 69,71Ga nuclei at two neighboring Ga sites. With the magnetic field along the a direction, the hyperfine parameters are 0.92 mT for the 69Ga nuclei and 1.16 mT for the 71Ga nuclei

    Identification of the Zinc-oxygen Divacancy in ZnO Crystals

    Get PDF
    An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ∼150 K with 442 nm laser light converts these (V2−Zn − V2+O)0 defects to their EPR-active state (V−Zn − V2+O)+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the divacancy is holelike and has a well-resolved angular dependence from which a complete g matrix is obtained. Principal values of the g matrix are 2.00796, 2.00480, and 2.00244. The unpaired spin resides primarily on one of the three remaining oxygen ions immediately adjacent to the zinc vacancy, thus making the electronic structure of the (V−Zn − V2+O)+ ground state similar to the isolated singly ionized axial zinc vacancy. The neutral (V2−Zn − V2+O)0 divacancies dissociate when the ZnO crystals are heated above 250 °C. After heating above this temperature, the divacancy EPR signal cannot be regenerated at low temperature with light

    Oxygen Vacancies Adjacent to Cu(2+) Ions in TiO(2) (Rutile) Crystals

    Get PDF
    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize Cu2+ ions substituting for Ti4+ ions in nominally undoped TiO2 crystals having the rutile structure. Illumination at 25 K with 442 nm laser light reduces the concentration of Cu2+ ions by more than a factor of 2. The laser light also reduces the EPR signals from Fe3+ and Cr3+ ions and introduces signals from Ti3+ ions. Warming in the dark to room temperature restores the crystal to its preilluminated state. Monitoring the recovery of the photoinduced changes in the Cu2+ ions and the other paramagnetic electron and hole traps as the temperature is raised from 25 K to room temperature provides evidence that the Cu2+ ions have an adjacent doubly ionized oxygen vacancy. These oxygen vacancies serve as charge compensators for the substitutional Cu2+ ions and lead to the formation of electrically neutral Cu2+-VO complexes during growth of the crystals. The Cu2+-VO complexes act as electron traps and convert to nonparamagnetic Cu+-VO complexes when the crystals are illuminated at low temperature. Complete sets of spin-Hamiltonian parameters describing the electron Zeeman, hyperfine, and nuclear electric quadrupole interactions for both the 63Cu and 65Cu nuclei are obtained from the EPR and ENDOR data. This study suggests that other divalent cation impurities in TiO2 such as Co2+ and Ni2+ may also have an adjacent oxygen vacancy for charge compensation
    corecore