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The gallium vacancy, an intrinsic acceptor, is identified in b-Ga2O3 using electron paramagnetic

resonance (EPR). Spectra from doubly ionized (V2�
Ga ) and singly ionized (V�Ga) gallium vacancies

are observed at room temperature, without photoexcitation, after an irradiation with high-energy

neutrons. The V2�
Ga centers (with S¼ 1/2) have a slight angular variation due to a small anisotropy

in the g matrix (principal values are 2.0034, 2.0097, and 2.0322). The V2�
Ga centers also exhibit a

resolved hyperfine structure due to equal and nearly isotropic interactions with the 69,71Ga nuclei at

two Ga sites (the hyperfine parameters are 1.28 and 1.63 mT for the 69Ga and 71Ga nuclei, respec-

tively, when the field is along the a direction). Based on these g-matrix and hyperfine results, the

model for the ground state of the doubly ionized vacancy (V2�
Ga ) has a hole localized on one

threefold-coordinated oxygen ion. The vacancy is located at one of the three neighboring gallium

sites, and the remaining two gallium neighbors are responsible for the equal hyperfine interactions.

The singly ionized (V�Ga) gallium vacancies are also paramagnetic. In this latter acceptor, the two

holes are localized on separate oxygen ions adjacent to one gallium vacancy. Their spins align par-

allel to give a triplet S¼ 1 EPR spectrum with resolved hyperfine structure from interactions with

gallium neighbors. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4983814]

Gallium oxide (b-Ga2O3) is a wide-band-gap semicon-

ductor with an optical band edge near 4.9 eV (�250 nm).

Potential applications of this material range from transparent

conducting electrodes to power electronics.1,2 Most b-Ga2O3

crystals available today are n type because of the uninten-

tional presence of silicon impurities (silicon is a shallow

donor when substituting for gallium ions).3,4 Thus far, little

is known experimentally about the structure and electronic

properties of other possible extrinsic donors and acceptors

such as germanium, fluorine, magnesium, and zinc. Also,

detailed information is not available for native donors and

acceptors (i.e., oxygen vacancies and gallium vacancies).

In the present letter, electron paramagnetic resonance

(EPR) is used to characterize the doubly ionized (S¼ 1/2)

and singly ionized (S¼ 1) charge states of the gallium

vacancy in a b-Ga2O3 crystal. These are the V2�
Ga and V�Ga

acceptors, respectively. The EPR spectra from these vacan-

cies are observed at room temperature after an irradiation

with high-energy neutrons. The angular dependence of the

V2�
Ga spectrum places the unpaired spin in a p orbital on an

oxygen ion. Resolved hyperfine lines show that the unpaired

spin in this center interacts equally with the nuclei (69Ga and
71Ga) at two neighboring Ga sites. The model that emerges

from these g-matrix and hyperfine results for the doubly ion-

ized gallium vacancy (V2�
Ga ) has the hole localized on a

threefold-coordinated oxygen ion (one of the three neighbor-

ing gallium sites is the vacancy, and the remaining two gal-

lium neighbors are responsible for the equal hyperfine

interactions). The vacancy is a sixfold-coordinated gallium

site. In the future, advanced density-functional-theory (DFT)

studies are expected to provide refinements to this V2�
Ga

model (e.g., lattice relaxation and charge delocalization).5–8

The b-Ga2O3 crystal used in the present study was grown

by the Czochralski method at Northrop Grumman Synoptics

(Charlotte, NC). An iridium crucible was utilized, and the

growth atmosphere was a mixture of Ar, CO2, and O2. The

growth rate was 1.5 mm/h. The structure of b-Ga2O3 crystals

is monoclinic, and the space group is C2/m (C3
2h). Lattice con-

stants9,10 are a¼ 12.214 Å, b¼ 3.0371 Å, c¼ 5.7981 Å, and

b¼ 103.83�. There are two inequivalent gallium sites and

three inequivalent oxygen sites in b-Ga2O3. The Ga(I) ions

are at tetrahedral sites (with four oxygen neighbors) and the

Ga(II) ions are at octahedral sites (with six oxygen neighbors).

The O(I) and O(II) ions have three gallium neighbors and the

O(III) ions have four gallium neighbors. We use the labeling

scheme introduced by Geller.9 Figure 1 shows a ball-and-stick

representation of a unit cell in the b-Ga2O3 crystal.

The EPR spectra were taken at room temperature using a

Bruker EMX spectrometer (the microwave frequency was near

9.85 GHz). Approximate dimensions of the EPR sample were

3.0� 1.5� 5.0 mm3. Static magnetic fields were measured

using a Bruker nuclear magnetic resonance (NMR) teslameter.

The only EPR spectra initially present in the as-grown crystal

were from shallow donors and trace amounts of Fe3þ and

Cr3þ. To produce the gallium vacancies, the b-Ga2O3 crystal

was neutron-irradiated at the Ohio State University Research

Reactor (Columbus, OH). The crystal was held for 3 h in the

central irradiation facility of the reactor where the total flux

was �2.1� 1013 neutrons cm–2s–1 and the thermal flux was

�1.3� 1013 neutrons cm–2s–1. Although not measured during

the irradiation, the temperature of the crystal is estimated to

have remained below 150 �C. An important effect of the neu-

tron irradiation is the lowering of the Fermi level in the crystala)Author to whom correspondence should be addressed: Nancy.Giles@afit.edu
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as significant concentrations of gallium-vacancy acceptors are

formed by momentum-conserving displacement events.11 A

lower Fermi level allows the V2�
Ga and V�Ga charge states of the

gallium vacancies to be observed without photoexcitation.

Effects of the transmutation of Ga to Ge, occurring as a result

of the irradiation, were not observed using EPR.

Figure 2(a) shows the EPR spectrum from the doubly ion-

ized gallium vacancy (V2�
Ga ) in the neutron-irradiated b-Ga2O3

crystal. These data were obtained at room temperature with

the magnetic field along the a direction. The V2�
Ga acceptor

(S¼ 1/2) has a spectrum consisting of a symmetrical set of

partially resolved hyperfine lines of differing intensities

(more intense in the center and less intense at the higher and

lower fields) due to interactions with nearby 69Ga and 71Ga

nuclei. Both of these isotopes have I¼ 3/2 nuclear spins, but

their natural abundances and magnetic moments are measur-

ably different. The 69Ga and 71Ga are 60.1% and 39.9% abun-

dant, respectively, and their magnetic moments12 are
69l¼þ2.0166bn and 71l¼þ2.5623bn. As illustrated by the

stick diagrams above the spectrum in Fig. 2(a), the complex

hyperfine pattern is explained by having the unpaired spin in

the V2�
Ga acceptor interact equally with the nuclei at two gal-

lium sites. There are three combinations of the two Ga iso-

topes that give rise to the observed hyperfine pattern: they are

(i) two 69Ga nuclei, (ii) one 69Ga nucleus and one 71Ga

nucleus, and (iii) two 71Ga nuclei. Each of these combinations

is represented in a separate stick diagram above the experi-

mental spectrum (the relative lengths of the vertical lines in

the diagrams reflect the natural abundances of the two iso-

topes). For example, the uppermost stick diagram shows the

seven lines (with relative intensities of 1:2:3:4:3:2:1) that are

produced when the unpaired spin interacts equally with two
69Ga nuclei. The lowest stick diagram in Fig. 2(a) is the sum

of the three upper stick diagrams and thus should be directly

compared to the experimental spectrum.

In Fig. 2(a), the set of seven lines produced by the equal

interactions of the unpaired spin with two 71Ga nuclei (i.e.,

the red stick diagram) provides a method to precisely deter-

mine values of hyperfine parameters. The outermost lines in

this set are isolated, with little interference from other lines.

Their separation, divided by six, gives the hyperfine parame-

ter for 71Ga. Scaling the result for the difference in magnetic

moments then gives the related value for 69Ga. These lowest

and highest lines in the 71Ga-71Ga portion of the spectrum in

Fig. 2(a) are near 346.00 and 355.75 mT. This yields values

FIG. 1. Schematic representation of a unit cell in b-Ga2O3. Gallium ions are

shown in green and oxygen ions are shown in red. The two inequivalent gal-

lium sites, Ga(I) and Ga(II), and the three inequivalent oxygen sites, O(I),

O(II), and O(III), are labeled. The types of oxygen ions around each gallium

site are indicated.

FIG. 2. (a) The EPR spectrum from

the S¼ 1/2 doubly ionized gallium

vacancy (V2�
Ga ) in b-Ga2O3. These data

were taken at room temperature after a

neutron irradiation. The microwave

frequency was 9.8389 GHz, and the

magnetic field was along the a direc-

tion. Above the spectrum, stick dia-

grams identify individual hyperfine

lines arising from interactions with

gallium nuclei at two neighboring gal-

lium sites. (b) Simulated EPR spec-

trum using the Bruker SimFonia

program.

202104-2 Kananen et al. Appl. Phys. Lett. 110, 202104 (2017)



of 1.28 and 1.63 mT for the 69Ga and 71Ga parameters,

respectively, when the magnetic field is along the a direction.

The simulated spectrum in Fig. 2(b) was created with the

SimFonia program from Bruker by using these 1.28 and

1.63 mT hyperfine parameters and a linewidth of 0.327 mT.

The two spectra (experimental and simulated) are in excel-

lent agreement, thus confirming our explanation of the

observed hyperfine pattern. Similar measurements of the

EPR spectra taken with the magnetic field along the other

crystallographic directions show that the 69Ga and 71Ga

hyperfine matrices are nearly isotropic. This indicates that

the unpaired spin density on the two neighboring ions is pri-

marily in Ga 4s orbitals. Values of the Ga hyperfine parame-

ters for the three crystallographic directions are listed in

Table I.

The g matrix for the V2�
Ga acceptor has a small, but easily

measured, anisotropy. Figure 3 shows the angular dependence

of the center EPR line when rotating the direction of the mag-

netic field from a to b, b to c, and c to a* in increments of 15�.
The space group for b-Ga2O3 allows two crystallograpically

equivalent, but magnetically inequivalent, orientations for a

defect. Site splitting, however, was not observed in the angu-

lar dependence of the V2�
Ga center. The a and c directions are

not 90� apart in the monoclinic structure; thus, an a* direction

is introduced that is 90� from b and c. The angular

dependence in Fig. 3 is described by the electron Zeeman

term in the spin Hamiltonian (H¼ bS�g�Bþ
P

(Ii Ai S)).

There are turning points in Fig. 3 along the b direction and

near the a* direction. In the c to a* plane, the observed turn-

ing point is approximately 10� from a* (which means that the

turning point is near a). This places the principal axes of the g
matrix approximately along the crystallographic a, b, and c
directions. The corresponding g values (i.e., the principal val-

ues of the g matrix) are listed in Table I. These values were

used to generate the solid curves in Fig. 3.

The small and positive g shifts observed for the V2�
Ga

acceptor agree with a model that has the unpaired spin (i.e.,

the hole) primarily located in a pz orbital on an oxygen ion

adjacent to the gallium vacancy. As described in the earlier

analysis of a similar defect in LiAlO2 crystals,13 the oxygen

with the hole is an O– ion with a 2p5 configuration

(2px
22py

22pz). The threefold orbital degeneracy of this 2P

state (L¼ 1, S¼ 1/2) is removed by the local crystalline

electric field, thus forming three energy levels (E1, E2, and

E3). E1 is the ground state with the hole in the pz orbital,

whereas E2 and E3 are excited states with the hole in the px

and py orbitals of the ion, respectively. The spin-orbit inter-

action mixes these excited states with the ground state and

gives the following first-order expressions for the expected

principal g values:14

ga¼ ge; gb¼ ge �
2k

E2�E1

; gc¼ ge �
2k

E3�E1

: (1)

In these equations, ge is 2.0023 (for a “free” electron) and k is

the spin-orbit coupling constant for an O– ion. The value of

2.0034 for ga in Table I is close to 2.0023, which indicates

that the pz orbital containing the unpaired electron spin is ori-

ented nearly along the a direction in the crystal. Bartram

et al.15 have determined that the value of the spin-orbit cou-

pling constant k for an O– ion is –135 cm�1. The negative sign

for k gives rise to the observed positive g shifts (i.e., g values

greater than 2.0). Substituting the measured g values for the b
and c directions from Table I into the above equations gives

E3 – E1¼ 36480 cm–1 and E2 – E1¼ 9030 cm–1. These values

of E3 – E1 and E2 – E1 only represent crystal-field splittings

and are not necessarily good predictors of peak positions of

possible optical absorption bands.16

A schematic model of the doubly ionized gallium

vacancy (V2�
Ga ) is shown in Fig. 4. The hole is localized on a

threefold oxygen ion at an O(I) site, and the gallium vacancy

is at the neighboring sixfold Ga(II) site. The oxygen pz

orbital containing the unpaired spin (blue in Fig. 4) points

toward the Ga vacancy. This orientation allows the hole to

avoid its positive neighbors as much as possible, thus mini-

mizing the total energy of the defect. The unpaired spin

interacts primarily with the gallium ions at the two equiva-

lent sites labeled GaA(I) and GaB(I). Principal-axis directions

of the g matrix in Table I (and Fig. 3) agree with this model.

One principal axis is near the unique direction of the pz

orbital (along the a direction toward the vacancy), another

axis is parallel to the line joining the GaA and GaB neighbors

(the b direction), and the remaining axis is perpendicular to

the pz orbital (near the c direction). Although not yet estab-

lished, significant lattice distortion within this model is

TABLE I. g values and hyperfine parameters describing the EPR spectra

from the doubly ionized gallium vacancy (V2�
Ga ) when the magnetic field is

along each of the three crystallographic axes. The 69Ga and 71Ga parameters

refer to interactions with individual nuclei at the two neighboring gallium

sites. The estimated error is 60.0002 for the g values and 60.01 mT for the

hyperfine values.

Direction of magnetic field g value

Hyperfine parameters (mT)

69Ga 71Ga

a crystal axis 2.0034 1.28 1.63

b crystal axis 2.0322 1.44 1.82

c crystal axis 2.0097 1.36 1.73

FIG. 3. Angular dependence of the g matrix. The change in the position of

the center line of the V2�
Ga acceptor is shown for rotations in three planes.

The discrete points are experimental results, and the solid curves are

computer-generated using the g values listed in Table I. Magnetic field val-

ues along the right vertical axis correspond to a microwave frequency of

9.835 GHz.

202104-3 Kananen et al. Appl. Phys. Lett. 110, 202104 (2017)



expected, with the oxygen ion with the unpaired spin (i.e.,

the hole) possibly moving 0.1–0.2 Å or more. We note that

an EPR spectrum from a gallium vacancy at a fourfold Ga(I)

site was not seen in our experiments. If Ga(I) vacancies are

formed during the irradiation, our results suggest that they

are in a nonparamagnetic charge state at room temperature.

Singly ionized gallium vacancies (V�Ga) are also observed

in the b-Ga2O3 crystal after the neutron irradiation. In this

charge state of the acceptor, two holes are located at separate

oxygen ions next to one gallium vacancy. The two holes are

weakly coupled (via exchange and dipole-dipole interactions)

and form a triplet S¼ 1 state that can be detected with EPR.

Figure 5 shows the spectrum from the V�Ga acceptor. The data

were taken at room temperature with the direction of the mag-

netic field approximately halfway between the a and c direc-

tions in the a–c plane. In this spectrum, the S¼ 1 defect has

two sets of lines, in the low and high magnetic field regions,

that are separated by about 16.7 mT (this is the maximum sepa-

ration observed for any orientation of magnetic field). The

S¼ 1/2 spectrum from the V2�
Ga charge state of the gallium

vacancy is in the center region of Fig. 5 and is very close to the

midpoint of the two S¼ 1 sets of lines. Thus, the spectra from

the V2�
Ga and V�Ga acceptors have the same g value for this

direction of the magnetic field. Also, the separations between

adjacent 69Ga and 71Ga hyperfine lines in the two spectra in

Fig. 5 differ by a factor of two. The average of the 69Ga and
71Ga hyperfine parameters for the S¼ 1/2 spectrum is 1.48 mT,

while the spacing of the lines in the S¼ 1 spectrum is 0.73 mT.

Earlier work17,18 has shown that when two S¼ 1/2

defects weakly couple to form an S¼ 1 defect, the resulting

triplet EPR spectrum has an averaged g matrix g¼ 1
2

(g1þ g2)

and hyperfine spacings that are reduced by a factor of two

(A¼ 1
2

A1¼ 1
2

A2). Both of these features are clearly seen in

the S¼ 1 spectrum in Fig. 5, and, together, they strongly sup-

port a model for the singly ionized gallium vacancy V�Ga

where the two holes are localized separately on opposing

oxygen ions adjacent to one gallium vacancy. If each hole

interacts primarily with the Ga nuclei at its two neighboring

Ga sites, a total of 13 hyperfine lines are expected18 in each

of the S¼ 1 sets of lines in the low and high magnetic field

regions of Fig. 5. Nine lines can be seen in each of these sets

in Fig. 5, with the intensities of the remaining lines below the

noise level. Based on the model in Fig. 4, a V2�
Ga acceptor con-

verts to a V�Ga acceptor by localizing a second hole on the oxy-

gen ion, O(III), at the bottom of the figure, opposite to the

initial hole at the top of the figure. The two holes in the result-

ing V�Ga acceptor would be approximately 4.0 Å apart in the

unrelaxed lattice (the expected lattice relaxation will likely

increase this separation). Assuming only a magnetic dipole-

dipole interaction between the two holes and using a value of

DB¼ 16.7 mT for the difference in the field between the two

sets of S¼ 1 lines lead to a separation distance between the

holes of about 5.5 Å. Triplet spectra of the type being observed

in b-Ga2O3, where two holes are trapped on separate oxygen

ions adjacent to one cation vacancy, have been previously

reported for ZnO, Al2O3, and MgO crystals.19–23

In conclusion, we report the initial observations of the

doubly ionized and singly ionized gallium vacancies in a

bulk b-Ga2O3 crystal. The unpaired spin (i.e., the hole) in

the doubly ionized V2�
Ga charge state is localized on one

threefold-coordinated oxygen adjacent to a gallium vacancy

at a sixfold-coordinated gallium site. The resolved hyperfine

structure present in the EPR spectra is due to interactions

with the 69Ga and 71Ga nuclei located at the remaining two

gallium neighbors next to the oxygen ion. The singly ionized

V�Ga charge state is an S¼ 1 triplet state with the two holes

separately localized on oxygen ions on opposite sides of the

FIG. 5. The EPR spectrum from the S¼ 1 singly ionized gallium vacancy

(V�Ga) in b-Ga2O3. The signal from the V2�
Ga acceptor is present in the middle

portion of this spectrum while lines from the V�Ga acceptor are seen in the

high and low magnetic field regions. The microwave frequency was

9.8306 GHz, and the direction of the magnetic field was approximately mid-

way between the a and c directions. A stick diagram above the spectrum

identifies gallium hyperfine lines.

FIG. 4. Model of the doubly ionized gallium vacancy (V2�
Ga ) in b-Ga2O3.

This view is looking back along the c axis (i.e., a projection on the plane per-

pendicular to the c axis). An unpaired spin (the hole) is localized in a pz

orbital on a threefold oxygen ion, O(I), adjacent to a gallium vacancy

(dashed square) at a sixfold Ga(II) site. The primary hyperfine interactions

are with the two equivalent gallium ions labeled GaA(I) and GaB(I).

202104-4 Kananen et al. Appl. Phys. Lett. 110, 202104 (2017)



gallium vacancy. The high degree of localization of each

hole on one oxygen ion and the accompanying lattice relaxa-

tion suggest that doubly ionized and singly ionized gallium

vacancies may not be shallow acceptors. It remains to be

determined whether the neutral gallium vacancy in b-Ga2O3

has a sufficiently shallow level to produce useful p-type

material.

This work was partially supported by Kenneth C.

Goretta and the GHz-THz Electronics portfolio of the Air

Force Office of Scientific Research (AFOSR). The views

expressed in this paper are those of the authors and do not

necessarily reflect the official policy or position of the Air

Force, the Department of Defense, or the United States

Government.
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