2,671 research outputs found

    The Optimal Single Copy Measurement for the Hidden Subgroup Problem

    Full text link
    The optimization of measurements for the state distinction problem has recently been applied to the theory of quantum algorithms with considerable successes, including efficient new quantum algorithms for the non-abelian hidden subgroup problem. Previous work has identified the optimal single copy measurement for the hidden subgroup problem over abelian groups as well as for the non-abelian problem in the setting where the subgroups are restricted to be all conjugate to each other. Here we describe the optimal single copy measurement for the hidden subgroup problem when all of the subgroups of the group are given with equal a priori probability. The optimal measurement is seen to be a hybrid of the two previously discovered single copy optimal measurements for the hidden subgroup problem.Comment: 8 pages. Error in main proof fixe

    ARIS-Campaign: intercomparison of three ground based 22 GHz radiometers for middle atmospheric water vapor at the Zugspitze in winter 2009

    Get PDF
    This paper presents the Alpine Radiometer Intercomparison at the Schneefernerhaus (ARIS), which took place in winter 2009 at the high altitude station at the Zugspitze, Germany (47.42° N, 10.98° E, 2650 m). This campaign was the first direct intercomparison between three new ground based 22 GHz water vapor radiometers for middle atmospheric profiling with the following instruments participating: MIRA 5 (Karlsruhe Institute of Technology), cWASPAM3 (Max Planck Institute for Solar System Research, Katlenburg-Lindau) and MIAWARA-C (Institute of Applied Physics, University of Bern). Even though the three radiometers all measure middle atmospheric water vapor using the same rotational transition line and similar fundamental set-ups, there are major differences between the front ends, the back ends, the calibration concepts and the profile retrieval. The spectrum comparison shows that all three radiometers measure spectra without severe baseline artifacts and that the measurements are in good general agreement. The measurement noise shows good agreement to the values theoretically expected from the radiometer noise formula. At the same time the comparison of the noise levels shows that there is room for instrumental and calibration improvement, emphasizing the importance of low elevation angles for the observation, a low receiver noise temperature and an efficient calibration scheme. <br><br> The comparisons of the retrieved profiles show that the agreement between the profiles of MIAWARA-C and cWASPAM3 with the ones of MLS is better than 0.3 ppmv (6%) at all altitudes. MIRA 5 has a dry bias of approximately 0.5 ppm (8%) below 0.1 hPa with respect to all other instruments. The profiles of cWASPAM3 and MIAWARA-C could not be directly compared because the vertical region of overlap was too small. The comparison of the time series at different altitude levels show a similar evolution of the H<sub>2</sub>O volume mixing ratio (VMR) for the ground based instruments as well as the space borne sensor MLS

    Including Systematic Uncertainties in Confidence Interval Construction for Poisson Statistics

    Get PDF
    One way to incorporate systematic uncertainties into the calculation of confidence intervals is by integrating over probability density functions parametrizing the uncertainties. In this note we present a development of this method which takes into account uncertainties in the prediction of background processes, uncertainties in the signal detection efficiency and background efficiency and allows for a correlation between the signal and background detection efficiencies. We implement this method with the Feldman & Cousins unified approach with and without conditioning. We present studies of coverage for the Feldman & Cousins and Neyman ordering schemes. In particular, we present two different types of coverage tests for the case where systematic uncertainties are included. To illustrate the method we show the relative effect of including systematic uncertainties the case of dark matter search as performed by modern neutrino tel escopes.Comment: 23 pages, 10 figures, replaced to match published versio

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor

    Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue

    Get PDF
    The transcription factor T-bet was identified in CD4+ T cells, and it controls interferon γ production and T helper type 1 cell differentiation. T-bet is expressed in certain other leukocytes, and we recently showed (Lord, G.M., R.M. Rao, H. Choe, B.M. Sullivan, A.H. Lichtman, F.W. Luscinskas, and L.H. Glimcher. 2005. Blood. 106:3432–3439) that it regulates T cell trafficking. We examined whether T-bet influences homing of mast cell progenitors (MCp) to peripheral tissues. Surprisingly, we found that MCp homing to the lung or small intestine in T-bet−/− mice is reduced. This is reproduced in adhesion studies using bone marrow–derived MCs (BMMCs) from T-bet−/− mice, which showed diminished adhesion to mucosal addresin cellular adhesion molecule–1 (MAdCAM-1) and vascular cell adhesion molecule–1 (VCAM-1), endothelial ligands required for MCp intestinal homing. MCp, their precursors, and BMMCs do not express T-bet, suggesting that T-bet plays an indirect role in homing. However, adoptive transfer experiments revealed that T-bet expression by BM cells is required for MCp homing to the intestine. Furthermore, transfer of WT BM-derived dendritic cells (DCs) to T-bet−/− mice restores normal MCp intestinal homing in vivo and MCp adhesion to MAdCAM-1 and VCAM-1 in vitro. Nonetheless, T-bet−/− mice respond vigorously to intestinal infection with Trichinella spiralis, eliminating a role for T-bet in MC recruitment to sites of infection and their activation and function. Therefore, remarkably, T-bet expression by DCs indirectly controls MCp homing to mucosal tissues

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic
    • …
    corecore