21 research outputs found

    Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes

    Get PDF
    How various epigenetic mechanisms restrict chromatin plasticity to determine the stability of repressed genes is poorly understood. Nuclear transfer to Xenopus oocytes induces the transcriptional reactivation of previously silenced genes. Recent work suggests that it can be used to analyze the epigenetic stability of repressed states. The notion that the epigenetic state of genes is an important determinant of the efficiency of nuclear reprogramming is supported by the differential reprogramming of given genes from different starting epigenetic configurations. After nuclear transfer, transcription from the inactive X chromosome of post-implantation-derived epiblast stem cells is reactivated. However, the same chromosome is resistant to reactivation when embryonic fibroblasts are used. Here, we discuss different kinds of evidence that link the histone variant macroH2A to the increased stability of repressed states. We focus on developmentally regulated X chromosome inactivation and repression of autosomal pluripotency genes, where macroH2A may help maintain the long-term stability of the differentiated state of somatic cells

    Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency

    Get PDF
    How cell fate becomes restricted during somatic cell differentiation is a long-lasting question in biology. Epigenetic mechanisms not present in pluripotent cells and acquired during embryonic development are expected to stabilize the differentiated state of somatic cells and thereby restrict their ability to convert to another fate. The histone variant macroH2A acts as a component of an epigenetic multilayer that heritably maintains the silent X chromosome and has been shown to restrict tumor development. Here we show that macroH2A marks the differentiated cell state during mouse embryogenesis. MacroH2A.1 was found to be present at low levels upon the establishment of pluripotency in the inner cell mass and epiblast, but it was highly enriched in the trophectoderm and differentiated somatic cells later in mouse development. Chromatin immunoprecipitation revealed that macroH2A.1 is incorporated in the chromatin of regulatory regions of pluripotency genes in somatic cells such as mouse embryonic fibroblasts and adult neural stem cells, but not in embryonic stem cells. Removal of macroH2A.1, macroH2A.2 or both increased the efficiency of induced pluripotency up to 25-fold. The obtained induced pluripotent stem cells reactivated pluripotency genes, silenced retroviral transgenes and contributed to chimeras. In addition, overexpression of macroH2A isoforms prevented efficient reprogramming of epiblast stem cells to naïve pluripotency. In summary, our study identifies for the first time a link between an epigenetic mark and cell fate restriction during somatic cell differentiation, which helps to maintain cell identity and antagonizes induction of a pluripotent stem cell state

    Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency

    Get PDF
    How cell fate becomes restricted during somatic cell differentiation is a long-lasting question in biology. Epigenetic mechanisms not present in pluripotent cells and acquired during embryonic development are expected to stabilize the differentiated state of somatic cells and thereby restrict their ability to convert to another fate. The histone variant macroH2A acts as a component of an epigenetic multilayer that heritably maintains the silent X chromosome and has been shown to restrict tumor development. Here we show that macroH2A marks the differentiated cell state during mouse embryogenesis. MacroH2A.1 was found to be present at low levels upon the establishment of pluripotency in the inner cell mass and epiblast, but it was highly enriched in the trophectoderm and differentiated somatic cells later in mouse development. Chromatin immunoprecipitation revealed that macroH2A.1 is incorporated in the chromatin of regulatory regions of pluripotency genes in somatic cells such as mouse embryonic fibroblasts and adult neural stem cells, but not in embryonic stem cells. Removal of macroH2A.1, macroH2A.2 or both increased the efficiency of induced pluripotency up to 25-fold. The obtained induced pluripotent stem cells reactivated pluripotency genes, silenced retroviral transgenes and contributed to chimeras. In addition, overexpression of macroH2A isoforms prevented efficient reprogramming of epiblast stem cells to naïve pluripotency. In summary, our study identifies for the first time a link between an epigenetic mark and cell fate restriction during somatic cell differentiation, which helps to maintain cell identity and antagonizes induction of a pluripotent stem cell state

    Citrullination regulates pluripotency and histone H1 binding to chromatin.

    Get PDF
    Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.Cancer Research UKThis is the author accepted manuscript. The final version is available from the Nature Publishing Group via http://dx.doi.org/10.1038/nature1294

    Nuclear reprogramming

    No full text
    There is currently particular interest in the field of nuclear reprogramming, a process by which the identity of specialised cells may be changed, typically to an embryonic-like state. Reprogramming procedures provide insight into many mechanisms of fundamental cell biology and have several promising applications, most notably in healthcare through the development of human disease models and patient-specific tissue-replacement therapies. Here, we introduce the field of nuclear reprogramming and briefly discuss six of the procedures by which reprogramming may be experimentally performed: nuclear transfer to eggs or oocytes, cell fusion, extract treatment, direct reprogramming to pluripotency and transdifferentiation.status: publishe

    Mitosis gives a brief window of opportunity for a change in gene transcription

    No full text
    Cell differentiation is remarkably stable but can be reversed by somatic cell nuclear transfer, cell fusion, and iPS. Nuclear transfer to amphibian oocytes provides a special opportunity to test transcriptional reprogramming without cell division. We show here that, after nuclear transfer to amphibian oocytes, mitotic chromatin is reprogrammed up to 100 times faster than interphase nuclei. We find that, as cells traverse mitosis, their genes pass through a temporary phase of unusually high responsiveness to oocyte reprogramming factors (mitotic advantage). Mitotic advantage is not explained by nuclear penetration, DNA modifications, histone acetylation, phosphorylation, methylation, nor by salt soluble chromosomal proteins. Our results suggest that histone H2A deubiquitination may account, at least in part, for the acquisition of mitotic advantage. They support the general principle that a temporary access of cytoplasmic factors to genes during mitosis may facilitate somatic cell nuclear reprogramming and the acquisition of new cell fates in normal development.status: publishe

    Epigenetic factors influencing resistance to nuclear reprogramming

    No full text
    Patient-specific somatic cell reprogramming is likely to have a large impact on medicine by providing a source of cells for disease modelling and regenerative medicine. Several strategies can be used to reprogram cells, yet they are generally characterised by a low reprogramming efficiency, reflecting the remarkable stability of the differentiated state. Transcription factors, chromatin modifications, and noncoding RNAs can increase the efficiency of reprogramming. However, the success of nuclear reprogramming is limited by epigenetic mechanisms that stabilise the state of gene expression in somatic cells and thereby resist efficient reprogramming. We review here the factors that influence reprogramming efficiency, especially those that restrict the natural reprogramming mechanisms of eggs and oocytes. We see this as a step towards understanding the mechanisms by which nuclear reprogramming takes place.status: publishe

    Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process?

    No full text
    Differentiated cells can be experimentally reprogrammed back to pluripotency by nuclear transfer, cell fusion or induced pluripotent stem cell technology. Nuclear transfer and cell fusion can lead to efficient reprogramming of gene expression. The egg and oocyte reprogramming process includes the exchange of somatic proteins for oocyte proteins, the post-translational modification of histones and the demethylation of DNA. These events occur in an ordered manner and on a defined timescale, indicating that reprogramming by nuclear transfer and by cell fusion rely on deterministic processes.status: publishe

    Mitosis Gives a Brief Window of Opportunity for a Change in Gene Transcription

    No full text
    <div><p>Cell differentiation is remarkably stable but can be reversed by somatic cell nuclear transfer, cell fusion, and iPS. Nuclear transfer to amphibian oocytes provides a special opportunity to test transcriptional reprogramming without cell division. We show here that, after nuclear transfer to amphibian oocytes, mitotic chromatin is reprogrammed up to 100 times faster than interphase nuclei. We find that, as cells traverse mitosis, their genes pass through a temporary phase of unusually high responsiveness to oocyte reprogramming factors (mitotic advantage). Mitotic advantage is not explained by nuclear penetration, DNA modifications, histone acetylation, phosphorylation, methylation, nor by salt soluble chromosomal proteins. Our results suggest that histone H2A deubiquitination may account, at least in part, for the acquisition of mitotic advantage. They support the general principle that a temporary access of cytoplasmic factors to genes during mitosis may facilitate somatic cell nuclear reprogramming and the acquisition of new cell fates in normal development.</p></div

    Sonication does not eliminate mitotic advantage.

    No full text
    <p>(a) Interphase and mitotic donor nuclei were mildly sonicated to fragment the chromatin as shown by DAPI staining of the four kinds of donor nuclei. (b) The major proportion of DNA in both sonicated samples is above the size exclusion limit of the gel, confirming mild sonication. (c) Interphase and mitotic nuclei or corresponding sonicated chromatin preparations were transplanted into oocyte GVs and gene reactivation analyzed by RT-qPCR after 42 h. The mitotic advantage is retained on fragments of chromatin. Supporting data can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001914#pbio.1001914.s001" target="_blank">Data S1</a>. (d) Genomic DNA prepared from interphase and mitotic cells was injected into oocyte GVs and gene transcription assessed by RT-qPCR. There is no significant difference between interphase and mitotic DNA with respect to gene activation in the oocyte at either of the indicated time points. Supporting data can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001914#pbio.1001914.s001" target="_blank">Data S1</a>. (e) There is no observable difference in DNA methylation between interphase and mitotic cells as determined by pyrosequencing of bisulphite-converted genomic DNA (horizontal lines represent the indicated DNA sequences, with balls representing individual CpG dinucleotides; black filling represents the percentage of methylation for each site). Solid black bars represent the positions of known transcription factor binding sites, such as SP1/HRE. OS is Oct-Sox, PD is Pou-Domain, and SRR is the Sox2 Regulatory Region, and genomic distances are presented below each map, set relative to the transcriptional start site of each gene.</p
    corecore