2,359 research outputs found

    Micro-mechanical finite element analysis of Z-pins under mixed-mode loading

    Get PDF
    © 2015 Elsevier Ltd. All rights reserved.This paper presents a three-dimensional micro-mechanical finite element (FE) modelling strategy for predicting the mixed-mode response of single Z-pins inserted in a composite laminate. The modelling approach is based upon a versatile ply-level mesh, which takes into account the significant micro-mechanical features of Z-pinned laminates. The effect of post-cure cool down is also considered in the approach. The Z-pin/laminate interface is modelled by cohesive elements and frictional contact. The progressive failure of the Z-pin is simulated considering shear-driven internal splitting, accounted for using cohesive elements, and tensile fibre failure, modelled using the Weibulls criterion. The simulation strategy is calibrated and validated via experimental tests performed on single carbon/BMI Z-pins inserted in quasi-isotropic laminate. The effects of the bonding and friction at the Z-pin/laminate interface and the internal Z-pin splitting are discussed. The primary aim is to develop a robust numerical tool and guidelines for designing Z-pins with optimal bridging behaviour

    Probabilistic soil moisture projections to assess Great Britain's future clay-related subsidence hazard

    Get PDF
    Clay-related subsidence is Great Britain’s (GB) most damaging soil-related geohazard, costing the economy up to £500 million per annum. Soil-related geohazard models based on mineralogy and potential soil moisture deficit (PSMD) derived from historic weather data have been used in risk management since the 1990s. United Kingdom Climate Projections (UKCP09) suggest that regions of GB will experience hotter, drier summers and warmer, wetter winters through to 2050. As a result, PSMD fluctuations are expected to increase, exacerbating the shrinkage and swelling of clay soils. A forward-looking approach is now required to mitigate the impacts of future climate on GB’s built environment. We present a framework for incorporating probabilistic projections of PSMD, derived from a version of the UKCP09 stochastic weather generator, into a clay subsidence model. This provides a novel, national-scale thematic model of the likelihood of clay-related subsidence, related to the top 1-1.5m soil layer, for three time periods; baseline (1961-1990), 2030 (2020-2049) and 2050 (2040-2069). Results indicate that much of GB, with the exception of upland areas, will witness significantly higher PSMDs through to the 2050’s. As a result, areas with swelling clay soils will be subject to proportionately increased subsidence hazard. South-east England will likely incur the highest hazard exposure to clay-related subsidence through to 2050. Potential impacts include increased incidence of property foundation subsidence, alongside deterioration and increased failure rates of GB’s infrastructure networks. Future clay-subsidence hazard scenarios provide benefit to many sectors, including: finance, central and local government, residential property markets, utilities and infrastructure operators.EPSR

    Soil geohazard mapping for improved asset management of UK local roads

    Get PDF
    Unclassified roads comprise 60% of the road network in the United Kingdom (UK). The resilience of this locally important network is declining. It is considered by the Institution of Civil Engineers to be “at risk” and is ranked 26th in the world. Many factors contribute to the degradation and ultimate failure of particular road sections. However, several UK local authorities have identified that in drought conditions, road sections founded upon shrink–swell susceptible clay soils undergo significant deterioration compared with sections on non-susceptible soils. This arises from the local road network having little, if any, structural foundations. Consequently, droughts in East Anglia have resulted in millions of pounds of damage, leading authorities to seek emergency governmental funding. This paper assesses the use of soil-related geohazard assessments in providing soil-informed maintenance strategies for the asset management of the locally important road network of the UK. A case study draws upon the UK administrative county of Lincolnshire, where road assessment data have been analysed against mapped clay-subsidence risk. This reveals a statistically significant relationship between road condition and susceptible clay soils. Furthermore, incorporation of UKCP09 future climate projections within the geohazard models has highlighted roads likely to be at future risk of clay-related subsidence

    Enhanced visualization of the flat landscape of the Cambridgeshire Fenlands

    Get PDF
    The Fenlands of East Anglia, England, represent a subtle landscape, where topographic highs rarely exceed 30 m above sea level. However, the fens represent an almost full sequence of Quaternary deposits which, together with islands of Cretaceous and Jurassic outcrops, make the area of geological importance. This feature discusses the advantages of using 3D visualization coupled with high-resolution topographical data, over traditional 2D techniques, when undertaking an analysis of the landscape. Conclusions suggest that the use of 3D visualization will result in a higher level of engagement, particularly when communicating geological information to a wider public

    Opening up the coast

    Get PDF
    Coastal zones attract human settlement, business and industry, and are instrumental to the functioning of societies both in coastal states and the wider global community. However, the oceans and coasts are under growing pressure as human practices change, populations rise and climate change impacts increase. In managing coastal regions, high quality data forms the basis of rational decision-making. Large volumes of ‘triple bottom line’ data exists representing a wide variety of environmental, social, and economic themes in coastal regions. Such data is especially crucial to development of environmental risk evaluations for the coast. The momentum driving the Open Source data movement across the world is accelerating and consequently, huge quantities of data are becoming freely available to the public. This presents a valuable opportunity for coastal managers, policy makers and land planners, who need to evaluate the full implications of their choices. Decision-makers frequently need to draw on many disparate datasets. However, this can be complicated by many factors, including a lack of awareness of the full range of datasets available. This paper seeks to explore this area, taking the UK as an example, to reveal how currently available open data sources relate to coastal management decision-making. Environmental risk management is a cross-cutting theme, relevant to all areas of coastal management. As such, this topic is discussed and addressed within a case study focusing on the vulnerable coastal region of East Anglia. In collation and analysis of coastal data Geographical Information Systems (GIS) can play an important role, in line with this GIS approaches were utilised within the case study. The case study led to development of a conceptual framework which can be applied to future coastal risk assessments, using Open Source data. The UK is currently at the forefront of the Open Source data movement and as such it is used as an example within this paper, however the issues addressed have international relevance, and the UK perspective is used to illustrate wider opportunities, resulting from freely available data sources, extending to management of coastal regions globally

    Characterization of Aircraft Produced Soot and Contrails Near the Tropopause

    Get PDF
    Participation in the SUCCESS project primarily involved development and deployment of specific instruments for characterizing jet aircraft exhaust emissions as particulates and their subsequent evolution as contrail particles, either liquid or solid, as cirrus. Observations can be conveniently considered in two categories - close or distant from the aircraft. Thus close to the aircraft the exhaust is mixing through the engine turbulence with a much drier and colder environment and developing water/ ice supersaturation along the trail depending on circumstances (near field), whereas distant from the aircraft (far field) the exhaust has cooled essentially to ambient temperature, the turbulence has decayed and any particle growth or evaporation is controlled by the prevailing ambient conditions. Intermediate between these two regions the main aircraft vortices form (one on each side of the aircraft) which tend to inhibit mixing under some conditions, a region extending from a few aircraft lengths to sometimes a hundred times this distance. Our approach to the problem lay in experience gained in characterizing the smoke from hydrocarbon combustion in terms of its cloud forming properties and its potential influence on the radiation properties of the smoke and subsequent cloud from the viewpoint of reduction (absorbtion and scattering ) of solar radiation flux leading to significant global cooling (Hudson et al 1991; Hallett and Hudson 1991). Engine exhaust contains a much smaller proportion of the fuel carbon than is sometimes present in ordinary combustion (less than 0.01% compared with 10%) and influences condensation in quite different ways, to be characterized by the Cloud Condensation Nucleus, CCN - supersaturation spectrum. The transition to ice is to be related to the dilution of solution droplets to freeze by homogeneous nucleation at temperatures somewhat below -40C (Pueschel et al 1998). The subsequent growth of ice particles depends critically on temperature, supersaturation and to some extent pressure, as is demonstrated in an NSF funded project being carried out in parallel with the work reported here. As will be discussed below, nucleation processes themselves and also exhaust impurities also influence the growth of ice particles and may control some aspects of growth of ice in contrails. Instrumentation was designed to give insight into these questions and to be flown on the NASA DC- 8 as a platform. In addition a modest program was undertaken to investigate the properties of laboratory produced smoke produced under controlled conditions from the viewpoint of forming both CCN and CN. The composition of the smoke could inferred from a thermal characterization technique; larger particles were captured by formvar replicator for detailed analysis; ice particles were captured and evaporated in flight on a new instrument, the cloudscope, to give their mass, density and impurity content

    Interaction of Z-pins with Multiple Mode II Delaminations in Composite Laminates

    Get PDF
    The application of Z-pinning is a subject of great interest in the field of through-thickness reinforcement (TTR) of composite laminates. To date, the majority of Z-pin characterisation work has been conducted on fracture coupons containing a single embedded delamination, which is often not representative of real failure of reinforced composite structures in service. In this investigation a test procedure to produce two independent Mode II delaminations was developed to analyse their interaction with a region of Z-pin reinforcement. Initially numerical models were used to optimise the chosen configuration. Experimental results show in detail the response of Z-pins to two independent delaminations. These results highlight the ability of the Z-pins to effectively arrest mode II delaminations at multiple levels through the sample thickness. Additionally they provide a much needed data set for validation and verification of Z-pin numerical modelling tools

    Forward-looking climatic scenarios of UK clay-related subsidence risk

    Get PDF
    An award drawing upon the Cranfield University EPSRC-funded Impact Acceleration Account (IAA) was awarded to staff in the University’s School of Energy, Environment and Agrifood (SEEA) (Hallett, Farewell, Pritchard), to undertake processing of UKCP09 climate projections for the United Kingdom (UK) in support of assessments of future geohazards and societal impact. This report identifies the technical outcomes from this work and presents the resultant climate change cartography and related data. Spatially coherent national data ensembles are generated for the UKCP09 ‘Baseline’ period, for ‘2030’ and ‘2050’. Maps of Potential Soil Moisture Deficit (PSMD) are produced for each to exemplify its application. The findings suggest that the extremes in PSMD observed at the current time in the UK are likely to become the norm by 2030 and 2050. The data produced has a range of potential applications, from geohazard assessments to the built environment and infrastructure, to agri-informatic modelling of agricultural crops, as well as modelling for 'future-proofing' of buildings against predicted climate change by example. It is anticipated that the datasets presented from this IAA will be of benefit to a range of end-user stakeholders. One example is in the insurance, reinsurance and water utility sectors, where modelling of future impacts of climate change are conducted. Recent research has suggested this data will likely prove of use for County Councils and municipal authorities, for example in the allocation of targeted road maintenance funding, particularly on local-authority owned highways. Rail network operators, having faced a number of embankment failures, and track undulations as a result of shrink/swell activity are also likely to benefit from this research. The soil moisture deficit scenarios produced could help such organisations better manage geotechnical assets and vegetation management of susceptible slopes and soils. Cranfield’s School of Energy, Environment and Agrifood (SEEA) manage and operate the Natural Perils Directory (NPD). The NPD is a widely used geohazard thematic dataset portraying vulnerabilities arising from soil-climate responses to long-term climate change. NPD will incorporate directly the datasets produced and described here

    The impact of nutritional choices on global warming and policy implications: examining the link between dietary choices and greenhouse gas emissions

    Get PDF
    Research over the past 10 years has illustrated an important connection between dietary choices, the food systems required to produce them, and the subsequent impact on greenhouse gas (GHG) emissions. Several recent studies have used data on the GHG contribution of different food types to model the impact of different dietary patterns on GHG emissions; these studies have most commonly compared the average diet for a particular country to healthier dietary options and vegetarian options. We present a systematic review of this research that models different dietary choices and the associated GHG emissions with the main aim in this paper of contrasting the research implications for policy and practice. A database search of CINAHL, ScienceDirect, Scopus, Web of Science, ProQuest, Cochrane Database of Systematic Reviews, and Mednar in July 2014 identified 21 primary studies modeling the GHG emissions related to a dietary pattern published since 1995. Diets containing a higher ratio of plant to animal products were generally associated with lower GHG emissions; however, the results varied across countries and studies, as did the recommendations by the study authors.Some authors proposed leading with health messages that have a dual environmental gain, whereas others proposed messaging around environmental impact. These inconsistencies in recommended approaches to reduce diet-related GHG emissions relate not just to differences in research findings but also to assumptions about community and political support for action, and there is little empirical evidence on community knowledge, attitudes, and behavioral intention at present to support these recommendations. The paper concludes with a commentary on the policy implications and the need for further research on how to frame the issue so as to garner community and political support to address the leading recommendations of this research
    • 

    corecore