2,141 research outputs found

    Experimental characterisation of fatigue damage in single Z-pins

    Get PDF
    Z-pins have been shown to significantly improve delamination resistance and impact strength of carbon fibre reinforced (CFRP) composites. In this paper, an experimental investigation of the influence of different fatigue parameters (mean opening/sliding displacement, amplitude, frequency, number of cycles) on the through-thickness reinforcement (TTR) is presented. For mode I, it is shown that the degradation on pin behaviour during fatigue is mostly affected by the applied displacement amplitude. The degradation is primarily caused by surface wear. Due to the brittleness of the Z-pins, mode II fatigue does not have a significant effect for very small sliding displacements. Exceeding a critical displacement causes the pin to rupture within the very first cycles

    Overlooked Pearls: The Blue Oyster Cult and the Vampire in Modern Music

    Get PDF

    An economically viable ionic liquid for the fractionation of lignocellulosic biomass

    Get PDF
    Cost-effective fractionation (pretreatment) of lignocellulosic biomass is necessary to enable its large-scale use as a source of liquid fuels, bio-based materials and bio-derived chemicals. While a number of ionic liquids (ILs) have proven capable of highly effective pretreatment, their high cost presents a barrier to commercial viability. In this study, we investigate in detail the application of the low-cost (ca. $1 kg−1) ionic liquid triethylammonium hydrogen sulfate for the fractionation of the grass Miscanthus x giganteus into a cellulose rich pulp, a lignin and a distillate. We found that up to 85% of the lignin and up to 100% of the hemicellulose were solubilized into the IL solution. The hemicellulose dissolved mainly in monomeric form, and pentoses were partially converted into furfural. Up to 77% of the glucose contained in the biomass could be released by enzymatic saccharification of the pulp. The IL was successfully recovered and reused four times. A 99% IL recovery was achieved each time. Effective lignin removal and high saccharification yields were maintained during recycling, representing the first demonstration that repeated IL use is feasible due to the self-cleaning properties of the non-distillable solvent. We further demonstrate that furfural and acetic acid can be separated quantitatively from the non-volatile IL by simple distillation, providing an easily recoverable, valuable co-product stream, while IL degradation products were not detected. We further include detailed mass balances for glucose, hemicellulose and lignin, and a preliminary techno-economic estimate for the fractionation process. This is the first demonstration of an efficient and repeated lignocellulose fractionation with a truly low-cost IL, and opens a path to an economically viable IL-based pretreatment process

    Do-It-Yourself digital archaeology: introduction and practical applications of photography and photogrammetry for the 2D and 3D representation of small objects and artefacts

    Get PDF
    Photography and photogrammetry have recently become among the most widespread and preferred visualisation methods for the representation of small objects and artefacts. People want to see the past, not only know about it; and the ability to visualise objects into virtually realistic representations is fundamental for researchers, students and educators. Here, we present two new methods, the ‘Small Object and Artefact Photography’ (‘SOAP’) and the ‘High Resolution “DIY” Photogrammetry’ (‘HRP’) protocols. The ‘SOAP’ protocol involves the photographic application of modern digital techniques for the representation of any small object. The ‘HRP’ protocol involves the photographic capturing, digital reconstruction and three-dimensional representation of small objects. These protocols follow optimised step-by-step explanations for the production of high-resolution two- and three-dimensional object imaging, achievable with minimal practice and access to basic equipment and softwares. These methods were developed to allow anyone to easily and inexpensively produce high-quality images and models for any use, from simple graphic visualisations to complex analytical, statistical and spatial analyses.Introduction Materials and methods Expected result

    Tax vs. Debt Management Under Entitlement Spending: a Multicountry Study

    Get PDF
    In this paper we study the taxes vs. debt choice for public funding when spending is in large part predictable due to entitlement programs, but the necessary fiscal corrections may not be instantly and indefinitely elastic as usually assumed. We study fiscal behavior in a large sample of countries to determine what fiscal regimes have been used in practice, and what they reveal about the trade-off between raising taxes vs. issuing debt. Unsurprisingly, we find that fiscal discipline and the aims of fiscal rules have varied over the past 50 years. Discipline has generally weakened and there has been a greater tendency to use debt. But governments are no less forward looking than they were. Perhaps more surprising, the high debt countries were more disciplined than low debt economies\u2014but with worse outcomes because of their poor starting positions and more persistent public spending. The low debt countries have exploited their stronger initial position to allow less discipline; a \u201cresting on one\u2019s laurels\u201d approach

    Soft body impact on composites:Delamination experiments and advanced numerical modelling

    Get PDF
    Cohesive interface elements have become commonly used for modelling composites delamination. However, a limitation of this technique is the fine mesh size required. Here, a novel cohesive element formulation is proposed and demonstrated for modelling the numerical cohesive zone with equal fidelity but fewer elements in comparison to a linear cohesive element formulation. The newly proposed formulation has additional degrees of freedom in the form of nodal rotations which when combined with the use of multiple integration points per cohesive element, allows for delamination propagation to be modelled with increased stability. This element formulation is introduced with an adaptive modelling method, termed Adaptive Mesh Segmentation (AMS). To demonstrate its effectiveness under impact loading the new model is applied to a soft body beam bending test. This test, containing a delamination pre-crack, uses inertial constraints and results in a dynamic stress state when impacted by a gelatin cylinder

    Experimental Study on Delamination Migration in Composite Laminates

    Get PDF
    AbstractThe transition of delamination growth between different ply interfaces in composite tape laminates, known as migration, was investigated experimentally. The test method used promotes delamination growth initially along a 0/θ ply interface, which eventually migrates to a neighbouring θ/0 ply interface. Specimens with θ=60° and 75° were tested. Migration occurs in two main stages: (1) the initial 0/θ interface delamination turns, transforming into intraply cracks that grow through the θ plies; this process occurs at multiple locations across the width of a specimen, (2) one or more of these cracks growing through the θ plies reaches and turns into the θ/0 ply interface, where it continues to grow as a delamination. A correlation was established between these experimental observations and the shear stress sign at the delamination front, obtained by finite element analyses.Overall, the experiments provide insight into the key mechanisms that govern delamination growth and migration
    • …
    corecore