47 research outputs found

    A new variance ratio metric to detect the timescale of compensatory dynamics

    Get PDF
    Understanding the mechanisms governing ecological stability—why a property such as primary productivity is stable in some communities and variable in others—has long been a focus of ecology. Compensatory dynamics, in which anti-synchronous fluctuations between populations buffer against fluctuations at the community level, are a key theoretical mechanism of stability. Classically, compensatory dynamics have been quantified using a variance ratio approach that compares the ratio between community variance and aggregate population variance, such that a lower ratio indicates compensation and a higher ratio indicates synchrony among species fluctuations. However, population dynamics may be influenced by different drivers that operate on different timescales, and evidence from aquatic systems indicates that communities can be compensatory on some timescales and synchronous on others. The variance ratio and related metrics cannot reflect this timescale specificity, yet have remained popular, especially in terrestrial systems. Here, we develop a timescale-specific variance ratio approach that formally decomposes the classical variance ratio according to the timescales of distinct contributions. The approach is implemented in a new R package, called tsvr, that accompanies this paper. We apply our approach to a long-term, multisite grassland community dataset. Our approach demonstrates that the degree of compensation vs. synchrony in community dynamics can vary by timescale. Across sites, population variability was typically greater over longer compared to shorter timescales. At some sites, minimal timescale specificity in compensatory dynamics translated this pattern of population variability into a similar pattern of greater community variability on longer compared to shorter timescales. But at other sites, differentially stronger compensatory dynamics at longer compared to shorter timescales produced lower-than-expected community variability on longer timescales. Within every site, there were plots that exhibited shifts in the strength of compensation between timescales. Our results highlight that compensatory vs. synchronous dynamics are intrinsically timescale-dependent concepts, and our timescale-specific variance ratio provides a metric to quantify timescale specificity and relate it back to the classic variance ratio

    Foundations of Translational Ecology

    Get PDF
    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today\u27s complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues – as opposed to the top-down or expert-oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≄10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    The Long and the Short of It: Mechanisms of Synchronous and Compensatory Dynamics Across Temporal Scales

    No full text
    Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems

    A new variance ratio metric to detect the timescale of compensatory dynamics

    No full text
    Understanding the mechanisms governing ecological stability—why a property such as primary productivity is stable in some communities and variable in others—has long been a focus of ecology. Compensatory dynamics, in which anti-synchronous fluctuations between populations buffer against fluctuations at the community level, are a key theoretical mechanism of stability. Classically, compensatory dynamics have been quantified using a variance ratio approach that compares the ratio between community variance and aggregate population variance, such that a lower ratio indicates compensation and a higher ratio indicates synchrony among species fluctuations. However, population dynamics may be influenced by different drivers that operate on different timescales, and evidence from aquatic systems indicates that communities can be compensatory on some timescales and synchronous on others. The variance ratio and related metrics cannot reflect this timescale specificity, yet have remained popular, especially in terrestrial systems. Here, we develop a timescale-specific variance ratio approach that formally decomposes the classical variance ratio according to the timescales of distinct contributions. The approach is implemented in a new R package, called tsvr, that accompanies this paper. We apply our approach to a long-term, multisite grassland community dataset. Our approach demonstrates that the degree of compensation vs. synchrony in community dynamics can vary by timescale. Across sites, population variability was typically greater over longer compared to shorter timescales. At some sites, minimal timescale specificity in compensatory dynamics translated this pattern of population variability into a similar pattern of greater community variability on longer compared to shorter timescales. But at other sites, differentially stronger compensatory dynamics at longer compared to shorter timescales produced lower-than-expected community variability on longer timescales. Within every site, there were plots that exhibited shifts in the strength of compensation between timescales. Our results highlight that compensatory vs. synchronous dynamics are intrinsically timescale-dependent concepts, and our timescale-specific variance ratio provides a metric to quantify timescale specificity and relate it back to the classic variance ratio

    Consistent stabilizing effects of plant diversity across spatial scales and climatic gradients

    No full text
    Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m 2) to plot (400 m 2) and regional (5-214 km 2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes

    The spatial synchrony of species richness and its relationship to ecosystem stability

    No full text
    Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon and the conditions under which it may occur using theoretical simulations and empirical data from 20 marine and terrestrial metacommunities. Additionally, given the importance of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species richness is strongly related to stability. Our findings show that metacommunities often exhibit spatial synchrony in species richness. We also found that richness synchrony can be driven by environmental stochasticity and dispersal, two mechanisms of population spatial synchrony. Richness synchrony also depended on community structure, including species evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to richness synchrony than to species richness itself, likely because richness synchrony integrates information about community processes and environmental forcing. Our study highlights a new approach for studying spatiotemporal community dynamics and emphasizes the spatial dimensions of community dynamics and stability
    corecore