2 research outputs found

    Active Ground Patterns Near Mars' Equator in the Glen Torridon Region of Gale Crater

    Get PDF
    On Mars, near the equator, much of the terrain in Gale Crater consists of bedrock outcrops separated by relatively smooth, uniform regolith surfaces. In scattered sites, however, distinct patterns—in the form and texture of the ground surface—contrast sharply with the typical terrain and with eolian bedforms. This paper focuses on these diverse, intriguing ground patterns. They include ∼1 to >10 m-long linear disruptions of uniform regolith surfaces, alignments, and other arrangements of similar-sized rock fragments and shallow, ∼0.1 m-wide sandy troughs 1–10 m in length. Similar features were recognized early in the Mars Science Laboratory (MSL) mission, but they received only limited attention until Curiosity, the MSL rover, encountered striking examples in the Glen Torridon region. Herein, the ground patterns are illustrated with rover images. Potential mechanisms are briefly discussed in the context of the bedrock composition and atmospheric conditions documented by Curiosity. The evidence suggests that the patterns are active forms of spontaneous granular organization. It leads to the hypothesis that the patterns arise and develop from miniscule, inferred cyclic expansion and contraction of the bedrock and regolith, likely driven by oscillating transfers of energy and moisture between the atmosphere and the terrain. The hypothesis has significant implications for studies of contemporary processes on Mars on both sides of the atmosphere-lithosphere interface. The ground patterns, as well as ripples and dunes formed by the wind, constitute remarkable extra-terrestrial examples of granular self-organization, complex phenomena well known in diverse systems on Earth.A. G. Fairén was supported by the ERC-CoG #818602. M.-P. Zorzano has been partially funded by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”-Centro de Astrobiología (INTA-CSIC) and by the Spanish Ministry of Science and Innovation (PID2019-104205GB-C21). Last but not least, B. Hallet and R. S. Sletten gratefully acknowledge sustained funding for their work through the MSL mission in a NASA grant awarded to MSSS

    Origin and significance of decameter-scale polygons in the lower Peace Vallis fan of Gale crater, Mars

    No full text
    Decameter-scale polygons are extensively developed in the Bedded Fractured (BF) Unit of the lower Peace Vallis fan. The polygons occur in a likely extension of the Gillespie Lake Member, north of Yellowknife Bay, the section first drilled by the Mars Science Laboratory (MSL) mission. We examine hypotheses for the origin of these polygons to provide insight into the history of Gale crater. The polygons are ∼4–30 m across, square to rectangular, and defined by ∼0.5–4 m wide, generally straight troughs with orthogonal intersections. Polygon networks are typically oriented-orthogonal systems, with occasional nearly circular patterns, hundreds of meters across. Potential origins include cooling of lava, and for sedimentary units, syneresis, unloading, weathering, desiccation, impact processes, and cold-climate thermal contraction. Cold-climate thermal contraction is the hypothesis most consistent with the sedimentary nature of the BF Unit and the polygon morphology, geometry, networks, and apparent restriction to the coarse-grained Gillespie Lake Member. A periglacial setting further provides the best analogs for the circular networks and is consistent with geologic context and MSL data. Most of the decametric polygons appear to be ancient. They are confined to the Hesperian BF Unit, and only a few of their bounding fractures extend into younger or recently exposed units. In this regard, they differ from the majority of proposed thermal-contraction polygons on Mars, as those are generally thought to be young features, and, accordingly, the history of formation, preservation and reactivation of the decametric polygons is likely to be more complex than that of any proposed young polygons on Mars. The decametric polygons in the BF Unit may represent landforms developed in a cold but still comparatively wet interlude between a clement early Mars and the much drier and colder planet of today.DZO was supported by the Astromaterials Research and Exploration Science (ARES) Division at Johnson Space Center and the NASA Mars Science Laboratory (MSL) Participating Scientist Grant No. 10-MSLPSP10-0094. French authors (NM and LL) were supported by grants from the French National Agency for Space Studies, Centre National d'Etudes Spatiales (CNES). BH and RSS were supported by NASA Mars Science Laboratory via Malin Space Science Systems. AGF was supported by the Project “icyMARS”, funded by the European Research Council Starting Grant No. 307,496.Peer reviewe
    corecore