28 research outputs found
Phase noise robust optical heterodyne system for reduced complexity millimeter-wave analog radio-over-fibre
Strict optical linewidth/coherence requirements for A-RoF systems are overcome through development of an analog optical heterodyne architecture tolerant to phase noise and carrier offset. Successful generation and reception of a 60GHz UF-OFDM signal using two free-running tunable lasers, without digital phase/frequency offset compensation, is demonstrated
Optical heterodyne analog radio-over-fiber link for millimeter-wave wireless systems
Optical heterodyne analog radio-over-fiber (A-RoF) links provide an efficient solution for future millimeter wave (mm-wave) wireless systems. The phase noise of the photo-generated mm-wave carrier limits the performance of such links, especially, for the transmission of low subcarrier baud rate multi-carrier signals. In this work, we present three different techniques for the compensation of the laser frequency offset (FO) and phase noise (PN) in an optical heterodyne A-RoF system. The first approach advocates the use of an analog mm-wave receiver; the second approach uses standard digital signal processing (DSP) algorithms, while in the third approach, the use of a photonic integrated mode locked laser (MLL) with reduced DSP is advocated. The compensation of the FO and PN with these three approaches is demonstrated by successfully transmitting a 1.95 MHz subcarrier spaced orthogonal frequency division multiplexing (OFDM) signal over a 25 km 61 GHz mm-wave optical heterodyne A-RoF link. The advantages and limitations of these approaches are discussed in detail and with regard to recent 5G recommendations, highlighting their potential for deployment in next generation wireless systems
SystÚmes optiques dédiés à la 5° génération de réseaux sans fils (5G)
This thesis is for the development of future devices, systems and networks supporting the 5th Generation (5G) high-speed wireless internet. The demand for very high bit rate requires a sufficient large bandwidth, and therefore Millimeter-Wave (mm-wave) frequency band has a lot of interest. Several number of technologies will need to converge, co-exist and interoperate, and most importantly, cooperate, if this vision is to be efficiently and cost-effectively realized. The main concept within this next 5G is the integration of optical fiber networks and radio networks through Radio-over-Fiber (RoF) technology at mm-wave frequencies, to provide high-bandwidth front/backhaul services and enable scalable and manageable networks without a highly complex interface structure and multiple overlaid protocols.In this thesis, the mm-wave RoF communication systems are theoretically studied and experimentally demonstrated to investigate the system impairments. The work presented in this thesis is focused on optical noise represented by phase and intensity noise induced by optical source and chromatic dispersion introduced by optical fiber. The optical noise is analyzed and measured for different optical generation techniques. Two different down-conversion stages, mixer and envelope detector, are applied for signal processing and to decorrelate phase and intensity noise. We would like to highlight that this study and the model can be applicable toany kind of optical heterodyne generation system and any frequency range. The correlation among optical modes in optical frequency comb is examined to show the impact of chromatic dispersion. This thesis also exhibits the mm-wave power distribution over fiber span and how the chromatic dispersion effect on the RoF network is modified by varying dispersion parameters. Then, this thesis demonstrates how the optical phase decorrelation induced by chromatic dispersion results in mode partition noise at mm-wave RoF communication networks.When transmitting some types of data over the system, the results demonstrate the impact of optical noise and chromatic dispersion on the signal quality. The simulation results are presented and are in very good agreement with experimental results. The error vector magnitudethrough online process shows the impact of the system impairments on the system performance. The data rate and system evolution are compliance with communication standards at mm-wave.Cette thĂšse concerne le dĂ©veloppement de futurs appareils, systĂšmes et rĂ©seaux prenant en charge lâinternet haute vitesse, sans fil 5Ă©me gÂŽenĂ©ration (5G). La demande de dĂ©bit trĂšs Ă©levĂ© nĂ©cessite une bande passante suffisante, et ainsi la bande de frĂ©quence millimetrique (mm-wave) a beaucoup dâintĂ©rĂȘt. Un certain nombre de technologies devront converger, coexister et interagir, et surtout, coopĂ©rer, si cette vision doit ĂȘtre efficace et rentable. Le concept principal de cette de 5G est lâintĂ©gration de rĂ©seaux de fibre optique et Les rĂ©seaux radio grĂące Ă la technologie Radio-sur-Fibre (RoF) aux frĂ©quences dâonde millimetriques, pour fournir des services Ă large bande passante et permettre des rĂ©seaux Ă©volutifs et gĂ©rables sans structure dâinterface trĂšs complexe et multiples protocoles superposĂ©s.Dans cette thĂšse, les systĂšmes de communication RoF Ă ondes millimetriques sont thĂ©oriquement Ă©tudiĂ©s et dĂ©montrĂ©s expĂ©rimentalement pour Ă©tudier les altĂ©rations du systĂšme. Le travail prĂ©sentĂ© dans cette thĂšse est axĂ© sur le bruit optique reprĂ©sentĂ© par le bruit de phase et dâintensitĂ© induit par la source optique et la dispersion chromatique introduite par la fibre optique. Le bruit optique est analysĂ© et mesurĂ© pour diffĂ©rentes techniques de gĂ©nĂ©ration optique. Deux dispositifs diffĂ©rents de conversion, un mĂ©langeur et un dĂ©tecteur dâenveloppe sont, appliquĂ©s pour le traitement du signal et pour dĂ©corrĂ©ler la phase et le bruit dâintensitĂ©. Nous souhaitons souligner que cette Ă©tude et le modĂšle peuvent sâappliquer Ă tout type de systĂšme de gĂ©nĂ©ration optique hĂ©tĂ©rodyne et Ă toute gamme de frĂ©quences. La corrĂ©lation entre les modes optiques en peigne Ă frĂ©quence optique est examinĂ©e pour montrer lâimpact de la dispersion chromatique. Cette thĂšse prĂ©sente la distribution dâĂ©nergie des ondes millimetriques et son influence sur la portĂ©e des fibres et la façon dont lâeffet de dispersion chromatique sur le rĂ©seau RoF depend des paramĂštres de dispersion. Ensuite, cette thĂšse dĂ©montre comment la dĂ©corrĂ©lation de la phase optique induite par la dispersion chromatique entraĂźne un bruit de partition de modes dans les rĂ©seaux de communication RoF Ă ondes millimĂ©triques.Lors de la transmission de certains types de donnĂ©es sur le systĂšme, les rĂ©sultats dĂ©montrent lâimpact du bruit optique et de la dispersion chromatique sur le qualitĂ© du signal. Les rĂ©sultats de simulation sont prĂ©sentĂ©s et sont en trĂšs bon accord avec les rĂ©sultats expĂ©rimentaux. La grandeur du vecteur dâerreur evaluĂ©e par en processus en ligne montre lâimpact des altĂšrations du systĂšme sur les performances du systĂšme. Le dĂ©bit de donnĂ©es et lâĂ©volution du systĂšme prĂ©sentĂ©e sont en conformitĂ© avec les normes de communication comme Ă ondes millimĂ©triques
Optical systems for next wireless standard (5G) generation delivery
Cette thĂšse concerne le dĂ©veloppement de futurs appareils, systĂšmes et rĂ©seaux prenant en charge lâinternet haute vitesse, sans fil 5Ă©me gÂŽenĂ©ration (5G). La demande de dĂ©bit trĂšs Ă©levĂ© nĂ©cessite une bande passante suffisante, et ainsi la bande de frĂ©quence millimetrique (mm-wave) a beaucoup dâintĂ©rĂȘt. Un certain nombre de technologies devront converger, coexister et interagir, et surtout, coopĂ©rer, si cette vision doit ĂȘtre efficace et rentable. Le concept principal de cette de 5G est lâintĂ©gration de rĂ©seaux de fibre optique et Les rĂ©seaux radio grĂące Ă la technologie Radio-sur-Fibre (RoF) aux frĂ©quences dâonde millimetriques, pour fournir des services Ă large bande passante et permettre des rĂ©seaux Ă©volutifs et gĂ©rables sans structure dâinterface trĂšs complexe et multiples protocoles superposĂ©s.Dans cette thĂšse, les systĂšmes de communication RoF Ă ondes millimetriques sont thĂ©oriquement Ă©tudiĂ©s et dĂ©montrĂ©s expĂ©rimentalement pour Ă©tudier les altĂ©rations du systĂšme. Le travail prĂ©sentĂ© dans cette thĂšse est axĂ© sur le bruit optique reprĂ©sentĂ© par le bruit de phase et dâintensitĂ© induit par la source optique et la dispersion chromatique introduite par la fibre optique. Le bruit optique est analysĂ© et mesurĂ© pour diffĂ©rentes techniques de gĂ©nĂ©ration optique. Deux dispositifs diffĂ©rents de conversion, un mĂ©langeur et un dĂ©tecteur dâenveloppe sont, appliquĂ©s pour le traitement du signal et pour dĂ©corrĂ©ler la phase et le bruit dâintensitĂ©. Nous souhaitons souligner que cette Ă©tude et le modĂšle peuvent sâappliquer Ă tout type de systĂšme de gĂ©nĂ©ration optique hĂ©tĂ©rodyne et Ă toute gamme de frĂ©quences. La corrĂ©lation entre les modes optiques en peigne Ă frĂ©quence optique est examinĂ©e pour montrer lâimpact de la dispersion chromatique. Cette thĂšse prĂ©sente la distribution dâĂ©nergie des ondes millimetriques et son influence sur la portĂ©e des fibres et la façon dont lâeffet de dispersion chromatique sur le rĂ©seau RoF depend des paramĂštres de dispersion. Ensuite, cette thĂšse dĂ©montre comment la dĂ©corrĂ©lation de la phase optique induite par la dispersion chromatique entraĂźne un bruit de partition de modes dans les rĂ©seaux de communication RoF Ă ondes millimĂ©triques.Lors de la transmission de certains types de donnĂ©es sur le systĂšme, les rĂ©sultats dĂ©montrent lâimpact du bruit optique et de la dispersion chromatique sur le qualitĂ© du signal. Les rĂ©sultats de simulation sont prĂ©sentĂ©s et sont en trĂšs bon accord avec les rĂ©sultats expĂ©rimentaux. La grandeur du vecteur dâerreur evaluĂ©e par en processus en ligne montre lâimpact des altĂšrations du systĂšme sur les performances du systĂšme. Le dĂ©bit de donnĂ©es et lâĂ©volution du systĂšme prĂ©sentĂ©e sont en conformitĂ© avec les normes de communication comme Ă ondes millimĂ©triques.This thesis is for the development of future devices, systems and networks supporting the 5th Generation (5G) high-speed wireless internet. The demand for very high bit rate requires a sufficient large bandwidth, and therefore Millimeter-Wave (mm-wave) frequency band has a lot of interest. Several number of technologies will need to converge, co-exist and interoperate, and most importantly, cooperate, if this vision is to be efficiently and cost-effectively realized. The main concept within this next 5G is the integration of optical fiber networks and radio networks through Radio-over-Fiber (RoF) technology at mm-wave frequencies, to provide high-bandwidth front/backhaul services and enable scalable and manageable networks without a highly complex interface structure and multiple overlaid protocols.In this thesis, the mm-wave RoF communication systems are theoretically studied and experimentally demonstrated to investigate the system impairments. The work presented in this thesis is focused on optical noise represented by phase and intensity noise induced by optical source and chromatic dispersion introduced by optical fiber. The optical noise is analyzed and measured for different optical generation techniques. Two different down-conversion stages, mixer and envelope detector, are applied for signal processing and to decorrelate phase and intensity noise. We would like to highlight that this study and the model can be applicable toany kind of optical heterodyne generation system and any frequency range. The correlation among optical modes in optical frequency comb is examined to show the impact of chromatic dispersion. This thesis also exhibits the mm-wave power distribution over fiber span and how the chromatic dispersion effect on the RoF network is modified by varying dispersion parameters. Then, this thesis demonstrates how the optical phase decorrelation induced by chromatic dispersion results in mode partition noise at mm-wave RoF communication networks.When transmitting some types of data over the system, the results demonstrate the impact of optical noise and chromatic dispersion on the signal quality. The simulation results are presented and are in very good agreement with experimental results. The error vector magnitudethrough online process shows the impact of the system impairments on the system performance. The data rate and system evolution are compliance with communication standards at mm-wave
Optical systems for next wireless standard (5G) generation delivery
Cette thĂšse concerne le dĂ©veloppement de futurs appareils, systĂšmes et rĂ©seaux prenant en charge lâinternet haute vitesse, sans fil 5Ă©me gÂŽenĂ©ration (5G). La demande de dĂ©bit trĂšs Ă©levĂ© nĂ©cessite une bande passante suffisante, et ainsi la bande de frĂ©quence millimetrique (mm-wave) a beaucoup dâintĂ©rĂȘt. Un certain nombre de technologies devront converger, coexister et interagir, et surtout, coopĂ©rer, si cette vision doit ĂȘtre efficace et rentable. Le concept principal de cette de 5G est lâintĂ©gration de rĂ©seaux de fibre optique et Les rĂ©seaux radio grĂące Ă la technologie Radio-sur-Fibre (RoF) aux frĂ©quences dâonde millimetriques, pour fournir des services Ă large bande passante et permettre des rĂ©seaux Ă©volutifs et gĂ©rables sans structure dâinterface trĂšs complexe et multiples protocoles superposĂ©s.Dans cette thĂšse, les systĂšmes de communication RoF Ă ondes millimetriques sont thĂ©oriquement Ă©tudiĂ©s et dĂ©montrĂ©s expĂ©rimentalement pour Ă©tudier les altĂ©rations du systĂšme. Le travail prĂ©sentĂ© dans cette thĂšse est axĂ© sur le bruit optique reprĂ©sentĂ© par le bruit de phase et dâintensitĂ© induit par la source optique et la dispersion chromatique introduite par la fibre optique. Le bruit optique est analysĂ© et mesurĂ© pour diffĂ©rentes techniques de gĂ©nĂ©ration optique. Deux dispositifs diffĂ©rents de conversion, un mĂ©langeur et un dĂ©tecteur dâenveloppe sont, appliquĂ©s pour le traitement du signal et pour dĂ©corrĂ©ler la phase et le bruit dâintensitĂ©. Nous souhaitons souligner que cette Ă©tude et le modĂšle peuvent sâappliquer Ă tout type de systĂšme de gĂ©nĂ©ration optique hĂ©tĂ©rodyne et Ă toute gamme de frĂ©quences. La corrĂ©lation entre les modes optiques en peigne Ă frĂ©quence optique est examinĂ©e pour montrer lâimpact de la dispersion chromatique. Cette thĂšse prĂ©sente la distribution dâĂ©nergie des ondes millimetriques et son influence sur la portĂ©e des fibres et la façon dont lâeffet de dispersion chromatique sur le rĂ©seau RoF depend des paramĂštres de dispersion. Ensuite, cette thĂšse dĂ©montre comment la dĂ©corrĂ©lation de la phase optique induite par la dispersion chromatique entraĂźne un bruit de partition de modes dans les rĂ©seaux de communication RoF Ă ondes millimĂ©triques.Lors de la transmission de certains types de donnĂ©es sur le systĂšme, les rĂ©sultats dĂ©montrent lâimpact du bruit optique et de la dispersion chromatique sur le qualitĂ© du signal. Les rĂ©sultats de simulation sont prĂ©sentĂ©s et sont en trĂšs bon accord avec les rĂ©sultats expĂ©rimentaux. La grandeur du vecteur dâerreur evaluĂ©e par en processus en ligne montre lâimpact des altĂšrations du systĂšme sur les performances du systĂšme. Le dĂ©bit de donnĂ©es et lâĂ©volution du systĂšme prĂ©sentĂ©e sont en conformitĂ© avec les normes de communication comme Ă ondes millimĂ©triques.This thesis is for the development of future devices, systems and networks supporting the 5th Generation (5G) high-speed wireless internet. The demand for very high bit rate requires a sufficient large bandwidth, and therefore Millimeter-Wave (mm-wave) frequency band has a lot of interest. Several number of technologies will need to converge, co-exist and interoperate, and most importantly, cooperate, if this vision is to be efficiently and cost-effectively realized. The main concept within this next 5G is the integration of optical fiber networks and radio networks through Radio-over-Fiber (RoF) technology at mm-wave frequencies, to provide high-bandwidth front/backhaul services and enable scalable and manageable networks without a highly complex interface structure and multiple overlaid protocols.In this thesis, the mm-wave RoF communication systems are theoretically studied and experimentally demonstrated to investigate the system impairments. The work presented in this thesis is focused on optical noise represented by phase and intensity noise induced by optical source and chromatic dispersion introduced by optical fiber. The optical noise is analyzed and measured for different optical generation techniques. Two different down-conversion stages, mixer and envelope detector, are applied for signal processing and to decorrelate phase and intensity noise. We would like to highlight that this study and the model can be applicable toany kind of optical heterodyne generation system and any frequency range. The correlation among optical modes in optical frequency comb is examined to show the impact of chromatic dispersion. This thesis also exhibits the mm-wave power distribution over fiber span and how the chromatic dispersion effect on the RoF network is modified by varying dispersion parameters. Then, this thesis demonstrates how the optical phase decorrelation induced by chromatic dispersion results in mode partition noise at mm-wave RoF communication networks.When transmitting some types of data over the system, the results demonstrate the impact of optical noise and chromatic dispersion on the signal quality. The simulation results are presented and are in very good agreement with experimental results. The error vector magnitudethrough online process shows the impact of the system impairments on the system performance. The data rate and system evolution are compliance with communication standards at mm-wave
Fiber Propagation-Induced Mode Partition Noise in Millimeter-Wave Radio-Over-Fiber Systems
International audienc
Simplified Chromatic Dispersion Model Applied to Ultra-Wide Optical Spectra for 60 GHz Radio-Over-Fiber Systems
International audienc
Asymmetric Millimeter-Wave Spectrum in Laser Mode Partition Noise Generated by Fiber Transmission
International audienc