88,621 research outputs found

    A Bohmian approach to quantum fractals

    Get PDF
    A quantum fractal is a wavefunction with a real and an imaginary part continuous everywhere, but differentiable nowhere. This lack of differentiability has been used as an argument to deny the general validity of Bohmian mechanics (and other trajectory--based approaches) in providing a complete interpretation of quantum mechanics. Here, this assertion is overcome by means of a formal extension of Bohmian mechanics based on a limiting approach. Within this novel formulation, the particle dynamics is always satisfactorily described by a well defined equation of motion. In particular, in the case of guidance under quantum fractals, the corresponding trajectories will also be fractal.Comment: 19 pages, 3 figures (revised version

    Pupil participation in Scottish schools: final report

    Get PDF
    This research was commissioned by Learning and Teaching Scotland (LTS) to evaluate the nature of pupil participation in primary and secondary schools across Scotland. The specific objectives of the research were: <p>· To describe what school staff and pupils understand by the term ‘pupil participation’.</p> <p>· To describe the range and usage of pupil participation mechanisms employed in schools.</p> <p>· To describe how school staff respect and respond to pupils’ views and ideas, and those of the wider community.</p> <p>· To identify the characteristics of schools and classrooms that facilitate effective pupil participation.</p> <p>· To identify possible barriers to the development of pupil participation in schools and to make suggestions about how these can be overcome.</p> <p>· To capture examples of effective practice of pupil participation.</p> <p>· To make suggestions about how pupil participation can help support the implementation of the Curriculum for Excellence.</p&gt

    Reply to Comment by Galapon on 'Almost-periodic time observables for bound quantum systems'

    Full text link
    In a recent paper [1] (also at http://lanl.arxiv.org/abs/0803.3721), I made several critical remarks on a 'Hermitian time operator' proposed by Galapon [2] (also at http://lanl.arxiv.org/abs/quant-ph/0111061). Galapon has correctly pointed out that remarks pertaining to 'denseness' of the commutator domain are wrong [3]. However, the other remarks still apply, and it is further noted that a given quantum system can be a member of this domain only at a set of times of total measure zero.Comment: 3 page

    Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    Get PDF
    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density

    Apparatus for measuring electric field strength on the surface of a model vehicle Patent

    Get PDF
    Space environment simulation system for measuring spacecraft electric field strength in plasma sheat

    Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    Get PDF
    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to superconductor contacts. The current-voltage and electrical noise characteristics of these contacts could become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quantity often used to characterize electrical noise, very closely followed an empirical relationship given by S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density
    • 

    corecore