58,680 research outputs found

    Palladium, platinum, and gold distribution in serpentinite seamounts in the Mariana and Izu-Bonin forearcs: evidence from Leg 125 fluids and serpentinites

    No full text
    Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids

    Palladium, platinum, and gold distribution in serpentinite seamounts in the Mariana and Izu-Bonin forearcs: evidence from Leg 125 fluids and serpentinites

    No full text
    Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids

    Development of advanced techniques for rotorcraft state estimation and parameter identification

    Get PDF
    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases

    Anomalous Hall effect in superconductors with spin-orbit interaction

    Full text link
    We calculate the anomalous Hall conductance of superconductors with spin-orbit interaction and with either uniform or local magnetization. In the first case we consider a uniform ferromagnetic ordering in a spin triplet superconductor, while in the second case we consider a conventional s-wave spin singlet superconductor with a magnetic impurity (or a diluted set of magnetic impurities). In the latter case we show that the anomalous Hall conductance can be used to track the quantum phase transition, that occurs when the spin coupling between the impurity and electronic spin density exceeds a certain critical value. In both cases we find that for large spin-orbit coupling the superconductivity is destroyed and the Hall conductance oscillates strongly.Comment: 10 pages, 6 figure

    Perturbation expansions for a class of singular potentials

    Full text link
    Harrell's modified perturbation theory [Ann. Phys. 105, 379-406 (1977)] is applied and extended to obtain non-power perturbation expansions for a class of singular Hamiltonians H = -D^2 + x^2 + A/x^2 + lambda/x^alpha, (A\geq 0, alpha > 2), known as generalized spiked harmonic oscillators. The perturbation expansions developed here are valid for small values of the coupling lambda > 0, and they extend the results which Harrell obtained for the spiked harmonic oscillator A = 0. Formulas for the the excited-states are also developed.Comment: 23 page

    Development of a high-altitude airborne dial system: The Lidar Atmospheric Sensing Experiment (LASE)

    Get PDF
    The ability of a Differential Absorption Lidar (DIAL) system to measure vertical profiles of H2O in the lower atmosphere was demonstrated both in ground-based and airborne experiments. In these experiments, tunable lasers were used that required real-time experimenter control to locate and lock onto the atmospheric H2O absorption line for the DIAL measurements. The Lidar Atmospheric Sensing Experiment (LASE) is the first step in a long-range effort to develop and demonstrate an autonomous DIAL system for airborne and spaceborne flight experiments. The LASE instrument is being developed to measure H2O, aerosol, and cloud profiles from a high-altitude ER-2 (extended range U-2) aircraft. The science of the LASE program, the LASE system design, and the expected measurement capability of the system are discussed

    Biophysical, morphological, canopy optical property, and productivity data from the Superior National Forest

    Get PDF
    Described here are the results of a NASA field experiment conducted in the Superior National Forest near Ely, Minnesota, during the summers of 1983 and 1984. The purpose of the experiment was to examine the use of remote sensing to provide measurements of biophysical parameters in the boreal forests. Leaf area index, biomass, net primary productivity, canopy coverage, overstory and understory species composition data are reported for about 60 sites, representing a range of stand density and age for aspen and spruce. Leaf, needle, and bark high-resolution spectral reflectance and transmittance data are reported for the major boreal forest species. Canopy bidirectional reflectance measurements are provided from a helicopter-mounted Barnes Multiband Modular Radiometer (MMR) and the Thematic Mapper Simulator (TMS) on the NASA C-130 aircraft

    Density Perturbations and the Cosmological Constant from Inflationary Landscapes

    Full text link
    An anthropic understanding of the cosmological constant requires that the vacuum energy at late time scans from one patch of the universe to another. If the vacuum energy during inflation also scans, the various patches of the universe acquire exponentially differing volumes. In a generic landscape with slow-roll inflation, we find that this gives a steeply varying probability distribution for the normalization of the primordial density perturbations, resulting in an exponentially small fraction of observers measuring the COBE value of 10^-5. Inflationary landscapes should avoid this "\sigma problem", and we explore features that can allow them to do that. One possibility is that, prior to slow-roll inflation, the probability distribution for vacua is extremely sharply peaked, selecting essentially a single anthropically allowed vacuum. Such a selection could occur in theories of eternal inflation. A second possibility is that the inflationary landscape has a special property: although scanning leads to patches with volumes that differ exponentially, the value of the density perturbation does not vary under this scanning. This second case is preferred over the first, partly because a flat inflaton potential can result from anthropic selection, and partly because the anthropic selection of a small cosmological constant is more successful.Comment: 23 page
    • …
    corecore