NASA Technical Memorandum 104568

Biophysical, Morphological, Canopy Optical Property, and Productivity Data From the Superior National Forest

F.G. Hall NASA Goddard Space Flight Center Greenbelt, Maryland

K.F. Huemmrich Hughes STX Corporation Lanham, Maryland

D.E. Strebel VERSAR, Inc. Columbia, Maryland

S.J. Goetz and J.E. Nickeson Hughes STX Corporation Lanham, Maryland

K.D. Woods University of California, Santa Barbara Santa Barbara, California

NVZV

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, Maryland 20771

1992

.

Acknowledgements

This experiment was conceived in 1982 by Daniel B. Botkin, University of California Santa Barbara (UCSB), and Robert B. MacDonald, Johnson Space Center (JSC) in Houston, Texas. A group of scientists at UCSB and JSC, including the Principal Investigators and Drs. Forrest Hall, Gautam Badhwar, Jack Estes, Alan Fieveson, Mark Wilson, Keith Henderson, Jack Paris, David Pitts and David Thompson, developed and submitted a proposal entitled "Habitability of the Earth: Assessing Key Vegetation Characteristics" to NASA Headquarters, Land Processes Branch, on November 1, 1982. The objective of the proposal was "... to investigate the use of satellite remote sensing to estimate leaf area index, biomass and net primary productivity...". The proposal was funded and two field seasons were conducted in the summers of 1983 and 1984 over a test site near Ely, Minnesota.

Dr. Kerry Woods, then at UCSB (now at Bennington College), along with Daniel Botkin, Robert MacDonald, Forrest Hall, and David Pitts, designed a detailed ground-data collection scheme and, along with Laurie Schmidt and a field crew of approximately 12, acquired the ground data throughout the summers of 1983 and 1984. A NASA Bell Jet-Ranger helicopter, piloted by Mr. Jim Adamson (now a Shuttle astronaut) and Mr. Steve Feaster of Johnson Space Center acquired spectral data over approximately 60-30 meter-diameter sites. The NASA C-130, managed by NASA Ames Research Center acquired Thematic Mapper Simulator spectral image data and color infrared photography. The U.S. Forest Service also supported the experiment by providing access, detailed maps of the area, and laboratory space and support in Ely.

As the second year of data collection was nearing completion, the satellite remote sensing program was eliminated at JSC. As a consequence, Dr. Forrest Hall moved to the Goddard Space Flight Center (GSFC) and, supported by Dr. Donald Strebel now of VERSAR Inc., transported the dataset to the GSFC. NASA Headquarters continued support for the transfer and analysis of the data.

Badhwar et al. (1986, 1986a), Pitts et al.(1988), and Shen et al. (1985) at JSC have published analysis results on the relationship of spectral data to biophysical parameters. Botkin et al. (1984), and Woods et al. (1991) have published analysis results on the biometry and ecology of the study. Hall et al. (1987, 1991) have published results on the use of satellite data to study the large-scale successional dynamics of the boreal forest.

Mr. K. Huemmrich of ST Systems Corp. organized the biophysical and leaf optical data, and wrote and edited this document. He worked with Mr. S. Goetz, and Ms. J. Nickeson of ST Systems Corp., who organized the helicopter, aircraft, and satellite data and wrote chapters 6, 7 and 8 documenting these data. Parts of chapter 3 were taken from the work of K. Woods (Woods et al. 1991). Ms. A. Montoro and Mr. E. Russell assisted by entering and formatting datasets.

iii

PRECEDING PAGE BLANK NOT FILMED

-.

Contents

Chapter 1 - Introduction	1 - 1
Chapter 2 - Ecological Setting	2 - 1
Table 2.1 SNF Flant Species Table 2.2 SNF Study Site Locations	2 - 5
Chapter 3 - Biophysical Data	3 - 1
Figures 3.1 and 3.2 Phenology Plots	3 - 5
Table 3.1 Canopy Species	3 - 6
Table 3.2 Subcanopy Species	3 - 8
Table 3.3 Understory Composition	3 - 9
Table 3.4 Cover by Stratum and Plot for Aspen Sites	3 - 14
Table 3.5 Statistics for Sacrificed Aspen Trees	3 - 15
Table 3.6 Statistics for Sacrificed Spruce Trees	3 - 16
Table 3.7 Aspen Biophysical Parameters	3 - 17
Table 3.8 Spruce Biophysical Parameters	3 - 18
Table 3.9 Aspen Canopy Phenology	3 - 19
Table 3.10 Subcanopy Phenology	3 - 20
Chapter 4 - Climate	4 - 1
Table 4.1 Monthly Climatological Data	4 - 2
Chapter 5 - Leaf Optical Properties	5 - 1
Table 5.1 Optical Properties Data Availability	5 - 6
Table 5.2 TMS Band Averages	5 - 7
Table 5.3 Figure Captions	5 - 15
Figures 5.1 to 5.41 Spectral Properties Plots	5 - 19
Chapter 6 - Helicopter MMR Data	6 - 1
Figures 6.1 to 6.5 MMR Reflectance Plots	6 - 3
Table 6.1 Helicopter MMR Data Availability 1983	6-6
Table 6.2 Helicopter MMR Data Availability 1984	6-9
Table 6.3 1983 Helicopter MMR Data	6 - 10
Table 6.4 1984 Helicopter MMR Data	6 - 19
Chapter 7 - Thematic Mapper Simulator Data	7 - 1
Table 7.1 Thematic Mapper Simulater Data	7 - 3
Chapter 8 - Satellite Data Availability	8 - 1
Table 8.1 Satellite Image Data Acquired for the SNF	8 - 2
Table 8.2 Comments on Satellite Image Data	8 - 3
Superior Natural Forest Related Publications	9 - 1
Appendix 1 SNF Data Disk Documentation	A - 1

ν

MER I J INTENTIONALLA HLANG

1.0 Introduction

During the summers of 1983 and 1984, NASA conducted an intensive experiment in a portion of the Superior National Forest (SNF) near Ely, Minnesota. The purpose of this experiment was to investigate the ability of remote sensing to provide estimates of biophysical properties of ecosystems, such as leaf area index (LAI), biomass and net primary productivity (NPP). The SNF is mostly covered by boreal forest. Boreal forests were chosen for this experiment because of their relative taxonomic simplicity, their great extent and their potential sensitivity to climatic change. Satellite, aircraft, helicopter and ground observations were obtained for the study area. These data comprise a unique dataset for the investigation of the relationships between the radiometric and biophysical properties of vegetated canopies. This is perhaps the most complete dataset of its type ever collected over a forested region. This report contains a compilation of data collected in this experiment.

Detailed vegetation data were collected on the ground for about 100 sampled sites. These sites represent a range of stand density and age for spruce and aspen and also include jackpine and mixed stands. At each site, five circular subplots of 16 meters in diameter were sampled within a large plot of 60-meters in diameter. Within the subplots, all woody stems over 2 meters tall were tallied by species, diameter and height. Within each subplot, coverage by vegetation was determined for the canopy, subcanopy and understory. Thirty each of black spruce and aspen trees from outside of the plots were sacrificed, and dimensional analysis relations developed between diameter at breast height, biomass and leaf area index. Also, above-ground net primary productivity was estimated for each test site. For the aspen sites, bark area and understory leaf area indexes were found. During the spring, measurements of understory leaf extension and canopy coverage were made on several days to describe the phenology of an aspen stand.

Measurements of the optical properties of canopy components were made for wavelengths between 0.35 and 2.1 micrometers. Reflectance and transmittance properties of leaves and needles of eight major overstory tree species and three understory shrubs were measured. Multiple measurements of aspen and spruce allow an investigation of the variability of optical properties within a species. Also, reflectance measurements were made for the bark of several tree species, sphagnum moss and leaf litter.

Above-canopy reflectance was observed by a helicopter-mounted Barnes Modular Multiband Radiometer (MMR). The helicopter MMR data have a spatial resolution of approximately 32 meters. In 1983, 10 days of data were collected between May and October, with a total of 105 sites observed. In 1984, 8 days of data were collected between May and September, with a total of 29 sites observed. Several sites have multiple observations, to allow studies of seasonal variation. Thematic Mapper Simulator (TMS) data were collected from the NASA C-130 flying over the SNF. The flights were in a "criss-cross" pattern to allow observation of the same location with multiple sun and view angles. The TMS scans out to 50 degrees off nadir; in flights at 5000 feet above ground level, a nadir pixel covers 3.81 meters along the scan. Three days of TMS data are presented; these data have been geometrically corrected, registered, atmospherically corrected and calibrated to determine surface reflectance.

A key goal of the experiment was to use the aircraft measurements to scale up to satellite observations for the remote sensing of biophysical parameters. Landsat and SPOT data were collected and examined. A listing of scenes that were aquired and comments on their quality are provided.

The data collected in the SNF are reported here to provide the research community with access to this valuable dataset.

2.0 Ecological Setting

The experiment took place in the Superior National Forest (SNF) in northeastern Minnesota, north of the town of Ely. The study area was centered at approximately 48 degrees North latitude and 92 degrees West longitude. The SNF is primarily boreal forest. Boreal forests were chosen for this study because of their relative taxonomic simplicity, great extent, and potential sensitivity to climatic change. Boreal forests cover approximately 9 million km² with eight species dominating in North America. The SNF is located near the southern edge of the North American boreal forest. This area may be particularly sensitive to climate change.

While several dozen tree species occur in the SNF, a few species dominate the landscape. Early successional stands on uplands are dominated by aspens (Populus tremuloides and P. grandidentata) or jack pines (Pinus banksiana). Jack pine, an evergreen conifer, generally dominates sites with shallow, dry soils, while the broadleaf deciduous aspens occur on mesic sites. Later in the succession, upland stands tend towards dominance by conifers: spruce (Picea mariana and P. glauca) and balsam fir (Abies balsamea). White and red pine (P. strobus and P. resinosa) are frequent and locally dominant, but constitute a small proportion of the total landscape cover. Extensive acidic peatlands often support sparse to dense stands of black spruce (P. mariana), mixed with open stands of tamarack (Larix laricina). Unforested areas occur on uplands in early succession or on rocky outcrops and in peatlands of perennially high water tables or extremely low nutrient availability.

Table 2.1 contains a list of the plant species encountered in the SNF with their scientific names and abbreviations used in this report.

Study sites were chosen in areas where the cover type was uniform. The sites in which biophysical measurements were made were, as much as possible, pure stands of aspen or spruce. The dominant species in each stand constituted over 80 percent, and usually over 95 percent, of the total tree density and basal area. Aspen stands were selected to be evenly distributed over the full range of age and stem density for stands that were essentially pure aspen, of nearly complete canopy closure, and greater than 2 meters in height. Spruce stands ranged from very sparse stands on wet, nutrient-poor bog sites to dense, closed stands on more productive peatlands. The sites were sampled to represent a variety of stand densities and leaf area indexes. Also, the sites needed to be accessible by investigators. Table 2.2 provides a list of the site locations and descriptions.

Table 2.1 - SNF Plant Species

This table contains the abbreviation, common and scientific names of plant species found in the SNF. The abbreviations are used to identify species in Tables 3.1, 3.2 and 3.3.

<u>Abbr</u>	<u>Common Name</u>	<u>Scientific Name</u>
ABBA	Fir, Balsam	Abies balsamea
ACRU	Maple, Red	Acer rubrum
ACSP	Maple, Mountain	Acer spicatum
ACTA	Baneberry	Actaea spp.
ALCR	Alder, Green	Alnus crispa
ALRU	Alder, Speckled	Alnus rubra
AMEL	Juneberry	Amelanchier spp.
ANGL	Bog Rosemary	Andromeda glaucophylla
ANQU	Wood Anemone	Anemone quinquefolia
ARNU	Wild Sarsaparilla	Aralia nudicaulis
ASCA	Wild Ginger	Asarum canadense
ASMA	Big-leaved Aster	Aster macrophyllus
ATFE	Lady Fern	Athyrium felix-femina
BEPA	Birch, Paper	Betula papyrifera
BLIT	Brown Litter	
BLWT	Bellwort	
CHCA	Leatherleaf	Chamaedaphne calyculata
CLBO	Blue-bead Lily	Clintonia borealis
COAM	Hazelnut, American	Corylus americana
COCA	Bunchberry	Cornus canadensis
COCO	Hazelnut, Beaked	Corylus cornuta
COGR	Gold-thread	Coptis groenlandica
COMP	Composites	(Unidentified)
COST	Red-osier Dogwood	Cornus stolonifera
DILO	Bush Honeysuckle	Diervilla lonicera
DRYO	Shield Fern	Dryopteris spp.
EQUI	Horsetail	Equisetum spp.
ERIO	Cotton Grass	Eriophorum spp.
FRVE	Wood Strawberry	Fragaria vesea
FUNG	Fungi	
GACI	Bedstraw (Wide Leaves)	Galium circaezans
GAHI	Creeping Snowberry	Gaultheria hispidula
GAPR	WinterGreen	Gaultheria procumbens
GATR	Bedstraw (Narrow Leaves)	Galium triflorum

Abbr	Common Name	<u>Scientific Name</u>
GLIT	Green Litter	
GORE	Rattlesnake Plantain	Goodyera repens
GRAS	Grasses (Unidentified)	
IMBI	Touch-me-not/Jewelweed	Impatiens biflora
КАРО	Bog Laurel	Kalmia polifolia
LALA	Tamarack (Larch)	Larix laricina
LAOC	Yellow Vetchling	Lathyrus ochrobucus
LAVE	Veiny (Purple) Vetch	Lathyrus venosus
LEGR	Labrador Tea	Ledum groenlandicum
LIBO	Twinflower	Linnaea borealis
LICH	Lichens	
LOCA	Honeysuckle	Lonicera canadensis
LYAN	Running Club Moss	Lycopodium annotinum
LYCL	Hairy Club Moss	Lycopodium claratum
LYCO	Ground Cedar	Lycopodium complanatum
LYOB	Ground Pine	Lycopodium obscurum
МАСА	Canadian Mayflower	Maianthemum canadense
MINT	Mint (Unidentified)	
MOSS	Mosses (Non-Sphagnum)	
OSCI	Cinnamon Fern	Osmunda cinnamomea
OSCL	Interrupted Fern	Osmunda claytoniana
PEPA	Early Sweet Coltsfoot	Pestasites palmata
PIBA	Pine, Jack	Pinus banksiana
PIGL	Spruce, White	Picea glauca
PIMA	Spruce, Black	Picea mariana
PIRE	Pine, Red	Pinus resinosa
PIST	Pine, White	Pinus strobus
POBA	Balsam Poplar	Populus balsamifera
POGR	Aspen, Big-Tooth	Populus gradidentata
POPE	May-Apple (Mandrake)	Podophyllum pletatum
POPU	Solomon Seal	Polygonatum pubescens
POTR	Aspen, Trembling	Populus tremuloides
POVU	Polypody Fern	Polypodium vulgare
PRPE	Cherry. Pin	Prunus pennsylvanica
PRVE	Cherry, Choke	Prunus virginiana
ΡΤΑΟ	Bracken Fern	Pteridium aquilinum
PYEL	Shinleaf	Pyrola elliptica
QUBO	Oak, Northern Red	Quercus borealis
QUPA	Oak, Pin	Quercus palustris

Abbr	Common Name	<u>Scientific Name</u> Bibos spp
RIDE	Gooseberry/Currant Books	Ribes spp.
ROCK	Rocos	Rosa snn
RUSA	Rior	Rubus spp.
KUDU	brief	Rubus spp.
SALX	Willows	Salix spp.
SAMA	Black Snakeroot	Sanicula marilandica
SAPU	Pitcher Plant	Sarracenia purpurea
SEDG	Sedges (Unidentified)	
SMTR	Bog False Solomon Seal	Smilacina trifoliata
SOAM	Mountain Ash	Sorbus americana
SOLI	Goldenrod	Solidago spp.
SPHA	Sphagnum Moss	Sphagnum spp.
STRO	Twisted Stalk	Streptopus roseus
TRBO	Starflower	Trientalis borealis
TRCE	Noffing Trillium	Trillium cernuum
VAAN	Lowbush Blueberry	Vaccinium angustifolium
VAMA	Large Cranberry	Vaccinium macrocarpon
VAOX	Small Cranberry	Vaccinium oxycoccus
VIOL	Violet	Viola spp.
VIRE	Arrowood	Viburnum recognitum
VITR	Highbush Cranberry	Viburnum trilobum
VTCH	Vetch	

Table 2.2 - SNF Study Site Locations

This table contains the locations of the study sites in the SNF experiment. The first column is the identification number assigned to the site. The location is given in north latitude and west longitude in the form degrees, minutes, seconds. The elevation is in feet above sea level. Tree height is an estimate of the average canopy height in feet.

<u>Site</u>	<u>Latitude</u>	<u>Longitude</u>	<u>Elev.</u>	<u>Tree Ht</u>	Description
1	48 6 46	92 20 28	1380	80	high-density red pine
2	48 8 7	92 18 21	1360	50	dense, mature black spruce
3	48 7 55	92 15 15	1380	80	medium-density mature aspen
4	48 8 30	92 12 1	1440		medium-density red pine
5	48 6 15	9299	1460		
6	4884	92 15 7	1380		
8	48 6 13	9244	1370	60	medium-density jack pine over black spruce
10	4867	92 3 50	1370	70	mature jack pine over mixed species
12	48 4 42	91 57 36	1430	20	sparse, low black spruce
13	48 4 40	91 57 16	1480		medium-density red pine
14	48 8 10	92 18 24	1360	60	dense, mature black spruce
15	48 8 14	92 18 27	1360	60	dense, mature black spruce
16	48 7 55	92 15 3	1380	60	mediumdensity mature aspen
17					
18	48 4 45	91 57 36	1430	25	sparse, low black spruce
19	48 4 49	91 57 36	1430	25	sparse, low black spruce
20	48 6 18	92 2 34	1420	45	medium-density aspen, mixed
21	48 5 59	92 0 59	1440	65	medium-to high-density aspen
22	48 5 56	92 0 59	1440	50	high-density aspen
23	48 8 15	92 17 15	1360		water site, Lake Jeanette
24	48 8 15	9280	1380		water site, Meander Lake
25	48 5 0	92 0 0	1410		water site, Big Lake
26	48 4 30	91 56 45	1460		water site, Ed Shave Lake
27			1370		water site
28			1390		water site
30	48 4 22	92 7 45	1420		medium-density red pine
36	47 59 33	91 54 35	1500		medium-density aspen, mixed
37	48 6 52	92 9 30	1410		medium-density aspen
38	48 7 21	92 9 54	1440	30	low-to medium-density black spruce
39	47 59 52	91 55 13	1440	20	low-to medium-density black spruce
40					
41	48 0 25	91 55 46	1400	60	high-density black spruce
42	48 0 25	91 55 42	1400	60	medium-density black spruce
43	48 1 17	91 55 8	1440	60	medium-density black spruce
45	48 0 40	91 50 18	1360	40	medium-density black spruce
46	48 0 40	91 50 13	1360	40	medium-density black spruce
47	48 1 1	91 53 2	1500	35	medium-density black spruce
48	48 1 2	91 53 29	1520	50	medium-density black spruce
49	48 1 5	91 53 26	1500	35	medium-density black spruce
50	48 0 50	91 53 45	1480	35	low-density black spruce
51	47 59 57	91 55 21	1440	25	low-density black spruce
52	48 0 0	91 55 19	1440	60	low-density black spruce
53	48 0 14	91 55 3	1450		medium-density red pine
54	48 0 19	91 55 3	1450	35	low-density black spruce
55	48 0 13	91 55 19	1450	40	medium-density black spruce
			2 - 5		

<u>Site</u>	Latitude	<u>Longitude</u>	<u>Elev.</u>	<u>Tree Ht</u>	Description
56	48 2 18	91 55 23	1430		medium-density black spruce
57	48 7 44	92 18 15	1360	40	high-density black spruce
58	48 7 60	92 19 18	1360	40	low-density tamarack and black spruce
59	48 7 54	92 19 14	1360	45	low-density black spruce
60	48 7 40	92 15 5	1360		low-density black spruce
61	48 7 50	92 2 38	1400		low-density, young jack pine
62	48 4 56	91 57 52	1430	35	low-density black spruce
63	48 5 3	91 57 35			low-density black spruce
64	48 5 50	91 58 26	1430	35	small growth, low-density black spruce
65	48 6 15	92 1 34	1430	35	medium-density red pine
66	48 6 18	92 1 44	1450	35	medium-density red pine
67	48 6 12	92 1 34	1430	30	medium-density red pine
68	48 6 9	92 1 20	1425	45	high-density black spruce
69	48 6 41	92 8 50	1430	20	high-density, young aspen
70	48 6 37	92 8 48		20	high-density, young aspen
71	48 6 24	92 8 53	1450	25	high-density, young aspen
72	48 10 7	92 29 59	1300	80	high-density, large aspen
73	48 10 11	92 30 5	1250	80	high-density, large aspen
74	48 10 3	92 30 15	1325	80	high-density, large aspen
75	48 9 53	92 30 21	1300	80	medium-density, large aspen
76	48 9 55	92 30 8	1250	60	medium-density aspen
77	48 9 9	92 26 17	1320	80	high-density, large aspen
78	48 9 7	92 26 24	1280	80	high-density aspen
79	47 58 23	91 46 7	1400	85	medium-density, large aspen, some birch
80	47 58 20	91 46 7	1400	80	medium-density aspen, birch
81	47 58 43	91 48 50	1400	85	high-density, large aspen
82	47 58 39	91 48 53	1410	85	high-density, large aspen
83	47 58 36	91 48 56	1410	85	high-density, large aspen
84	48 6 51	92 7 35	1500	15	high-density, small aspen
85	48 6 52	92 7 38	1510	65	medium-density, medium size aspen
86	47 59 1	91 53 7	1520	15	low-density aspen
87	48 7 42	92 7 26	1380	20	low-density aspen
88	48 6 11	92 9 9	1465	25	low-density, young aspen
89	48 7 5	92 9 19	1450	20	low-density aspen, with maple, oak, birch
90	48 9 28	92 22 10	1380	80	medium-density aspen
91	48 9 8	92 21 55	1380	80	high-density aspen
92	48 9 33	92 26 46	1260	85	high-density aspen
93	48 9 35	92 26 43	1285	90	high density aspen
94	48 0 41	91 50 45	1400	15	low-density, young aspen
95	48 0 22	91 50 52	1395	15	low-density aspen
96	47 58 15	91 46 0	1400	80	medium-density aspen
97	47 58 20	91 45 57	1410	80	medium-density aspen, open understory
98	48 0 23	91 50 59	1390	70	medium-density aspen
99	48 0 45	91 50 26	1440	20	low-density, young aspen, dense understory
100	48 0 10	91 49 60	1360		high-density black spruce
101	48 0 34	91 50 7	1380		high-density black spruce
102	48 6 9	92 1 14	1430	50	high-density black spruce
103	48 5 51	91 58 28	1450	45	low-density black spruce
104	48 5 56	91 58 28	1440	30	low-density black spruce
105	48 4 38	92 4 17	1375	50	high-density black spruce
106	48 0 54	91 53 34	1520	60	high-density jack pine and aspen mix
107	48 0 50	91 53 37	1520	60	high-density jack pine and aspen mix
108	48 0 22	91 52 58	1530	60	high-density jack pine and aspen mix
			2 - 6		

<u>Site</u>	<u>Latitude</u>	<u>Longitude</u>	<u>Elev.</u>	Tree Ht	Description
109		-	1520	60	high-density jack pine and aspen mix
110			1500	60	high-density jack pine and aspen mix
111	48 0 57	91 52 49	1500	60	high-density jack pine and aspen mix
112	48 0 56	91 52 35	1500	60	high-density jack pine and aspen mix
113	48 0 59	91 52 13	1440	60	high-density jack pine and aspen mix
114	48 0 59	91 52 15	1460	60	high-density jack pine and aspen mix
115	48 0 50	91 52 16	1440	60	high-density jack pine and aspen mix
116	47 44 50	91 58 12	1480	60	high-density jack pine
117	47 42 57	91 59 23	1460	60	high-density jack pine
118	47 42 58	91 59 25	1460	60	high-density jack pine
119	47 40 49	91 50 28	1530	60	high-density jack pine
120	47 40 45	91 50 24	1530	60	high-density jack pine
121	47 40 47	91 50 20	1530	60	high-density jack pine
122	47 40 49	91 50 25	1530	60	high-density jack pine
123	47 40 44	91 50 28	1540	60	high-density jack pine
124	47 39 27	91 47 41	1640	15	low-density jack pine
125	47 39 45	91 47 32	1610	15	low-density jack pine

•

•

;

•

.

.

~1

3.0 Biophysical Data

3.1 Introduction

The purpose of the SNF study was to improve our understanding of the relationship between remotely sensed observations and important biophysical parameters in the boreal forest. A key element of the experiment was the development of methodologies to measure forest stand characteristics to determine values of importance to both remote sensing and ecology. Parameters studied were biomass, leaf area index, above-ground net primary productivity, bark area index and ground coverage by vegetation. Thirtytwo quaking aspen and thirty-one black spruce sites were studied.

3.2 Site Measurements

Sites were chosen in uniform stands of aspen or spruce. The dominant species in each site constituted over 80 percent, and usually over 95 percent, of the total tree density and basal area. Aspen stands were chosen to represent the full range of age and stem density of essentially pure aspen, of nearly complete canopy closure, and of greater than 2 meters in height. Spruce stands ranged from very sparse stands on bog sites to dense, closed stands on more productive peatlands.

In each stand a uniform site 60 meters in diameter was laid out. Within this site, five circular plots, 16 meters in diameter, were positioned. One plot was at the center of the site and four were tangent to the center plot, one each in the cardinal directions. In very dense stands, plot radii were decreased so that stem count for the five plots remained around 200 stems. Use of multiple plots within each site allowed estimation of the importance of spatial variation in stand parameters.

Within each plot, all woody stems greater than 2 meters in height were recorded by species and relevant dimensions were measured. Diameter breast height (dbh) was measured directly. Height of the tree and height of the first live branch were determined by triangulation. The difference between these two heights was used as the depth of crown. The distances between trees and observer were such that no angle exceeded 65 degrees. Most plots were level, small slopes were ignored in calculating heights. Similar measurements were made for shrubs between 1 and 2 meters tall in the aspen sites. Table 3.1 has the species counts of the trees over 2 meters, and Table 3.2 has the species counts for the subcanopy trees between 1 and 2 meters tall.

For each plot, a 2-meter-diameter subplot was defined at the center of each plot. Within this subplot, the percent of ground coverage by plants under 1 meter in height was determined by species. These data, averaged for the five plots in each site, are presented in Table 3.3. Also, in each plot for the aspen sites, a visual estimation of the percent coverages of the canopy, subcanopy and understory vegetation was made. Table 3.4 contains the site averages of these coverage estimates.

3.3 Sacrificed Trees

Dimension analysis of sampled trees was used to develop equations linking the convenience measurements taken at each site and the biophysical characteristics of interest (for example, LAI or biomass). To develop these relations, 32 aspen and 31 spruce trees were sacrificed. The trees were randomly sampled, with stratification by diameter, from stands similar and near to the study sites.

Fifteen mountain maple and fifteen beaked hazelnut trees were also sampled and leaf areas were determined. These data were used to determine understory leaf area.

For each sampled tree, diameter at breast height, height to first live branch and total height were measured before and after felling. Measurements of all branches included: height of attachment on bole, diameter, length to first secondary branch and total length. Crowns were vertically stratified into three equal sections and six branches were randomly sampled from each stratum. For each sampled branch, all leaves and wood were weighted green and the current year's woody growth was measured. A sample of 200 leaves from each stratum had leaf area measured with a Licor leaf area meter and were dried and weighed. Subsamples from each sampled branch were dried and weighed.

Removal of green spruce needles from branches proved impractical, so needle-bearing parts of sampled branches were cut off, separated between current year and older classes, and dried. A sample of 21 needles each from the new and older growth were randomly selected from each canopy stratum. The sampled needles were photographed and green and dry weights were measured. Projected area was determined from the digitized photographs.

Boles were sectioned and weighed green. Four sections, 5 to 20 centimeters long were cut from: the base of the bole; halfway between the base and first live branch; just below the first live branch; and halfway between the first live branch and the tree top. Each section was measured, then dried and weighed.

3.4 Parameter Estimation from Sampled Trees

For each of the sacrificed trees, the total above-ground biomass was estimated as the sum of the branch and bole biomass. Branch biomass was estimated by finding the dry-to-green weight ratios for leaves, twigs and wood and using the ratios to convert the green-to-dry weights for the sampled branches. A regression of branch biomass on branch dimensions was done independently for each tree and used to determine biomass for the unsampled branches. Total branch biomass was the sum of the estimated biomass of the sampled and unsampled branches. Bole biomass was estimated by finding the dry-to-green weight ratios for each section, converting the green weights and summing. Total biomass is the sum of the branch and bole biomass.

Methods for estimating leaf area were parallel to those for estimating branch biomass. Leaf weights for unsampled branches were estimated using tree-specific, linear regressions on branch dimensions fit with data from sampled branches. For spruce, separate regressions were done for current-year and older needles. Measured and estimated foliage weights were summed within strata and, for spruce, age class. The foliage weights were converted to leaf areas using ratios determined from sampled leaves, then totaled for trees. The sacrificed tree statistics for aspen and spruce are in Tables 3.5 and 3.6.

Bark area in aspen was determined using similar techniques to those for leaf area. Sampled branches were divided into segments, each segment was assumed to be a cylinder and the surface area was calculated. Total branch surface area was the sum of the surface areas of the segments. A regression was developed to determine branch area for the unsampled branches. The sum of the estimated branch areas for the sampled and unsampled branches is the total bark area.

Net primary productivity was estimated from the average radial growth over 5 years measured from the segments cut from the boles and the terminal growth measured as the height increase of the tree. Allometric equations were used to find the height and radial increment as a function of crown height and diameter at breast height. Spruce used an additional parameter of stem density. The models were used to back project 5 years and determine biomass at that time. The change in biomass over that time was used to determine the productivity.

Measurements of the sacrificed trees were used to develop relationships between the biophysical parameters (biomass, leaf area index, bark area index and net primary productivity) and the measurements made at each site (diameter at breast height, tree height, crown depth and stem density). These relationships were then used to estimate biophysical characteristics for the aspen and spruce study sites as shown in Tables 3.7 and 3.8, respectively.

3.5 Stand Characteristics

Aspen is an early successional, shade intolerant species. Aspen stands are essentially even aged, and stand age appears to be the most significant difference among sites in determining stand density, average diameter, and biomass density. Biomass density was highest in stands of older, larger trees and decreased in younger stands with smaller, denser stems. Since all aspen stands had closed canopies, the inverse relationship between biomass density and stem density suggests a series of stands in various stages of self thinning. Aspen trees do not survive suppression, so that bole diameters tend to be relatively uniform and age-determined and biomass increases with age and diameter while density declines. LAI, however, remains relatively constant once a full canopy is established with aspen's shade intolerance generally preventing development of LAI greater than two to three. Biomass density and projected LAI were much more variable for spruce than for aspen. Spruce LAI and biomass density have a tight, nearly linear relationship. Stand attributes are often determined by site characteristics. Wet, ombrotrophic sites support open, low-biomass, mixed-age stands. Spruce stands with LAI below about two and biomass densities below about 5 kg/m² appear to be limited by site characteristics such as nutrient poverty and wetness. Stand quality improves with site richness until canopy closure brings on self thinning. Closed canopies attain maximum LAI at around four, higher than aspen, perhaps because spruce is more shade tolerant (it is often observed growing beneath closed aspen stands in the study area). However, differences between maximum LAI for aspen and spruce also may be related to differences in the leaf distribution within the canopy.

3.6 Phenology

Deciduous vegetation undergoes dramatic changes over the seasonal cycle. The varying amount of green foliage in the canopy effects the transpiration and productivity of the forest. Measurements of changes in the canopy and subcanopy green foliage amount over the spring of 1984 have been made. From above the subcanopy, photographs of the aspen canopy were taken, pointing vertically up. The photographs were taken at two locations in sites 16 and 93 on several different days. Foliage coverage was determined by overlaying grids with 200 points onto the photos of the canopy. The number of points obscured by vegetation were counted. These counts were adjusted for the area of the branches, which had been determined by photos taken before leaf out. The number of foliage points were then scaled between zero, for no leaves, to one, for maximum coverage. These values are presented in Table 3.9.

Subcanopy leaf extension was measured for beaked hazelnut and mountain maple, the two most common understory shrubs. For selected branches on trees in sites 16 and 93, the length and width of all leaves were measured on several days. These measurements were used to calculate a total leaf area which was scaled between 0 and 1 as with the aspen. These data are in Table 3.10.

These measurements of leaf out show that the subcanopy leaf expansion lags behind that of the canopy (see Figures 3.1 and 3.2). Subcanopy leaf expansion only begins in earnest after the canopy has reached nearly full coverage.

Figure 3.1 Relative canopy coverage of aspen overstory and relative leaf extension of understory trees, mountain maple and beaked hazelnut, during the spring of 1984 at site 16.

Figure 3.2 Relative canopy coverage of aspen overstory and relative leaf extension of understory trees, mountain maple and beaked hazelnut, during the spring of 1984 at site 93.

Table 3.1 - Canopy Species

This table provides a count of the number of trees over 2 meters broken down by species. The first column contains the site numbers, the other columns are the population of each species of tree at each site. The site locations are given in Table 2.2 and the species codes used for the column headings are described in Table 2.1.

,

Total	221	117	<u>1</u>	8	229	302	252	119	290	269	247	162	292	527	405	209	265	298	431	354	418	461	362	233	337	412	569	215	130	17	215	134	335	385	174	237	195	260	302	212
<u>SALX</u>	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OUBO	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
PRPE	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31	0	0	0	0	0	0	0	0	0	0	0	0	0
POTR	0	67	-	0	0	0	0	88	0	0	80	81	8 6	0	0	0	0	0	0	0	0	0	0	0	0	374	<u>2</u> 06	190	108	112	173	6 8	271	295	150	171	132	146	250	131
POCK	0	0	0	0	0	0	0	1	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	4	0	50	0
POBA	0	18	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PIST	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PIRE		0	0	7	0	0	0	0	0	0	0	7	0	0	0	0	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>PIMA</u>	177	0	69	15	202	g	252		273	263	-	6	0	200	393	20 6	258	295	394	353	397	460	362	184	294	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>ngı</u>	о ·	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>PIBA</u>	э ·	0	80	20	0	0	0	1	0	0	0	0	0	33	9	0	0	0	35		0	0	0	0	0	7	0	0	0	0	0	0	0	1	0	0	0	0	0	0
<u>rala</u>	- -	0	0	Ö	27	0	0	0	17	9	0	0	0	e	9	0	0		-	0	21		0	49	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>BEPA</u>	. .	ιn i	8	ŝ	0	0	0	9	0	0	4	20	8	0	0	0	-	0	0	0	0	0	0	0	0	4		e C	ŝ	ഗ	51	7	\$	74	24	4	49	11	0	0
AMEL		e e	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŝ	0	0	0	0	0	0	0	0	0
ALRU ,	- (CN 0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALCR ,		0 0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACSP	- ;	16 2		0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ACRU	-	.	-	0 0	0	0	0	0	0	0	118	35	15	0	0	0	0	0	0	0	0	0	0	0	0	32	12	0	15	2	7	0	œ	3	0	20	6	103	7	74
ABBA 1	-	-			0	0	0	7	0	0	4		83	0	0	0	ഗ	0	0	0	0	0	0	0	0	0	0	ដ	4	œ	11	4 3	10	13	0	ŝ	-	0	0	1
Site 1	4 0	n o	io e	29	2	14	15	16	18	19	20	21	36	88	6 6	41	42	43	49	20	51	22	55	62	63	69	5	2	73	74	75	77	79	8	81	82	83	85	8	87

Total	401	320	221	129	86	460	576	224	229	280	320	137
<u>SALX</u>	0	1	0	0	0	-	7	0	0	0	0	0
OUBO	0	ŝ	-	0	0	0	0	0	0	0	0	0
PRPE	0	0	0	0	0	0	0	0	0	0	0	0
POTR	306	154	112	103	29	445	539	119	144	209	259	0
POCR	0	24	0	0	0	9	0	0	0	2	19	0
POBA	0	0	0	0	0	0	0	0	0	0	0	0
PIST	0	0	0	0	0	0	0	0	0	ŝ	0	0
PIRE	0	-	0	0	0	0	0	0	0	0	0	0
PIMA	0	0	0	0	0	0	0	0	ŝ	0	0	1
PICL	0	0		1	0	0	0	0	2	c)	0	0
PIBA	0	0		0	0	0	0	-	0	9	0	122
LALA	0	0	0	0	0	0	0	0	0	0	0	0
BEPA	19	ß	4	4	ß	ъ	29	49	57	48	28	
AMEL	0	0	0	0	0	0	0	0	0	0	0	0
ALRU	0	0	0	0	0	0	0	0	0	0	0	0
ALCR	0	0	0	0	0	0	0	0	0	0	0	0
ACSP	0	0	0	0	0	0	0	0	0	0	0	0
ACRU	12	Ŕ	3	œ	4	ę	-	31	0	0	14	0
ABBA 4	<u>،</u>	0	e	13	10	0	0	24	23	6	0	13
Site 4	88	6 8	6	22	93	94	95	96	67	98	66	117

Table 3.2 - Subcanopy Species

This table provides a count of the number of trees between 1 and 2 meters tall, broken down by species. The first column contains the site numbers, the other columns are the population of each tree at each site. The site locations are given in Table 2.2 and the species codes used for the column headings are described in Table 2.1.

<u>Site</u>	<u>ABBA</u>	<u>ACRU</u>	<u>ACSP</u>	<u>ALRU</u>	<u>AMEL</u>	<u>BEPA</u>	$\overline{\infty}$	<u>COST</u>	LOCA	POTR	PRPE	OTHER	Total
3	0	0	6	3	3	0	13	1	0	1	0	0	27
16	0	13	45	6	0	0	88	0	0	2	0	0	154
20	0	7	1	0	0	0	62	0	0	6	0	0	76
21	0	6	0	1	2	0	32	0	0	5	0	4	50
- 36	5	0	0	0	0	0	0	0	0	11	0	0	16
69	0	3	0	0	0	0	35	0	0	0	9	0	47
71	0	4	0	0	2	0	9	0	0	2	14	0	31
72	0	0	6	0	2	0	31	0	13	0	0	0	52
73	1	0	33	0	0	0	42	0	0	0	0	0	76
74	0	0	18	1	0	0	35	2	0	2	0	0	58
75	1	0	51	0	4	0	61	0	0	0	0	0	117
77	0	0	44	0	0	0	37	0	1	0	0	0	82
79	0	10	46	0	5	0	5	0	0	29	0	0	95
80	0	0	1	0	0	0	37	1	0	28	0	0	67
81	0	0	5 9	0	7	0	32	30	0	20	0	0	148
82	0	2	45	0	0	0	2	1	0	21	0	0	71
83	0	0	54	0	2	0	45	0	0	21	0	0	122
84	0	7	9	0	0	0	24	0	0	36	0	0	76
85	0	1	11	0	0	3	58	4	0	4	0	0	81
86	0	2	20	12	0	0	39	0	0	32	0	2	107
87	0	0	6	0	0	0	188	0	0	0	0	0	194
88	0	9	7	0	0	3	14	0	0	1	0	0	34
89	0	4	12	0	0	4	31	0	0	2	0	0	53
90	1	6	1	6	0	0	142	0	0	3	0	4	163
92	1	1	3	0	5	0	143	0	0	2	0	4	159
93	2	1	23	0	8	0	143	0	0	0	0	0	177
94	0	4	0	0	0	0	200	0	0	85	2	0	291
95	0	0	0	8	0	3	24	0	0	43	0	0	78
96	0	2	0	0	0	0	3	0	0	3	0	0	8
97	0	0	0	0	0	0	3	0	0	0	0	2	5
98	4	0	0	0	6	1	25	0	0	5	0	1	42
99	0	0	0	57	0	1	305	0	0	34	1	2	400

Table 3.3 - Understory Composition

This table provides a measurement of the percent ground coverage provided by each species. The percentages are the average of five 2-meter-diameter subsamples in each site. Each column is a study site with a row for each species. Species codes are described in Table 2.1, site locations are listed in Table 2.2.

	2	3	12	14	15	16	18	19	20	21	36	38	39	41	42	43	45	47
ABBA	ō	0	0	0	0	0	0	0	3	2	6	0	0	0	1	0	0	0
ACRU	0	2	0	0	0	10	0	0	1	5	6	0	0	0	0	0	0	0
ACSP	0	2	0	0	0	17	0	0	1	1	0	0	0	0	0	0	0	0
ALRU	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
AMEL	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
ANGL	0	0	4	0	0	0	3	1	0	0	0	0	0	0	0	0	0	0
ANOU	0	1	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0
ARÑU	0	7	0	0	0	2	0	0	0	10	0	0	0	0	0	0	0	0
ASMA	0	18	0	0	0	14	0	0	8	26	38	0	0	0	0	0	0	0
ASCA	0	3	0	0	0	6	0	0	0	1	0	0	0	0	0	0	0	0
ATFE	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BEPA	0	0	0	0	0	0	0	0	0	-0	0	0	0	0	0	0	0	0
BLIT	14	6	1	14	7	14	7	5	5	16	25	10	3	17	14	13	25	8
CHCA	5	0	9	1	8	0	12	28	0	0	0	12	0	0	1	3	4	8
CLBO	0	1	0	0	0	3	0	0	3	2	6	2	0	0	0	0	0	0
COCA	0	0	0	0	0	0	0	0	10	6	7	0	1	0	4	0	0	0
COCO	0	1	0	0	0	6	0	0	8	5	3	0	0	0	0	0	0	0
COGR	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	0	0	0
COMP	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
COST	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DILO	0	3	0	0	0	1	0	0	0	1	1	0	0	0	U	0	0	0
EQUI	0	2	0	0	0	1	0	0	0	0	0	0	0	0	U	0	U	0
ERIO	0	0	3	0	0	0	11	10	0	0	0	0	0	0	0	0	0	0
FRVE	0	5	0	0	0	3	0	0	0	0	0	1	0	0	0	0	0	2
FUNG	1	1	4	0	4	1	1	0	0	0	0	1	0	0	0	0	0	0
GACI	0	U	0	0	10	1	0	0	0	0	0	2	4	4	8	5	3	4
GAHI	28	0	2	/	13	0	0	0	0	2	0	2	4	0	0	0	0	0
GAPK	0	0	U	0	0	0	0	0	0	2	2	0	0	0	0	ň	ñ	ñ
GAIK	0	4	0	0	0	2	0	0	0	0	0	2	1	3	8	2	5	ž
GLII	2	1	10	0 1	4	2	4	1	4	1	5	8	5	3	ñ	ñ	ñ	1
GKAS	5	5	12	2	4	2	4 0	1	4	0	0	0	0	ñ	ñ	Ň	õ	Ō
	0	1	2	1	0	0	2	5	0	0	ň	1	1	õ	ñ	Ő	1	1
	0	0	3	1	0	0	2	3	0 0	0	ň	Ô	0	õ	õ	õ	Ô	Ō
	0	0	0	ñ	ñ	ñ	ñ	0	ñ	1	ĩ	õ	õ	õ	Õ	Ō	Ō	Ō
LACC	22	0	5	14	27	ň	6	6	ñ	Ô	Ô	24	24	6	15	28	7	9
LEGK	0	ñ	0	0	-0	Õ	õ	õ	õ	3	1	0	0	Ō	0	0	0	0
LICH	ő	0 0	Ő	ň	õ	õ	ž	3	õ	Õ	ō	Õ	Ō	Ō	2	2	3	2
LOCA	ŏ	õ	õ	Õ	õ	ŏ	ō	Õ	Ō	1	Ō	0	0	0	0	0	0	0
LYAN	ŏ	Ő	Ő	Õ	Ō	Õ	Ō	Õ	0	Ō	1	6	5	0	0	0	0	8
LYCL	õ	0	Ō	Ō	Ō	Ō	Ó	0	0	0	0	0	0	0	0	0	0	0
LYCO	Ō	Ō	0	Ō	Ō	0	Ó	0	0	1	11	0	0	0	0	0	0	0
LYOB	Ō	0	0	0	0	1	0	0	6	11	0	0	1	1	1	0	0	0
MACA	0	2	Ó	0	0	0	0	0	0	4	4	0	0	0	0	0	0	0
MINT	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MOSS	3	2	0	72	30	3	3	0	14	5	3	10	34	4	36	34	8	5
OSCI	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0
OSCL	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
PEPA	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0

Table 3.3 cont. - Sites 2 through 47

	<u>2</u>	3	12	14	15	16	18	19	20	21		38	39	41	42	43	45	47
PIMA	1	0	3	2	3	0	13	15	0	0	0	2	6	1	4	2	0	2
PIST	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POTR	0	1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0
POPU	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
PIAQ	0	2	0	0	0	1	0	0	14	18	6	0	0	0	0	0	0	0
RIBE	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ROSA	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
RURI	0	0 4	0	0	0	1	0	0	17	2	10	0	0	0	0	0	0	0
SALX	1	0	0	0	0	1	0	0	0	3	1	0	0	0	0	0	0	0
SAMA	Ô	4	ñ	ñ	0	1	0	0	0	1	0	0	0	0	0	0	0	0
SAPU	õ	1	3	õ	õ	Ô	ž	2	0	0	0	0	0	0	0	0	0	0
SEDG	Ō	0	1	Õ	õ	õ	ō	ō	6	Ő	3	õ	õ	0	5	0	10	32
SMTR	14	0	14	13	12	Ō	Õ	Õ	Õ	õ	õ	6	ğ	5	6	6	10	20
SOLI	0	0	0	0	0	0	Ó	0	1	Ō	õ	Õ	Ó	õ	ŏ	Ő	0	0
SPHA	68	0	60	16	68	0	62	62	0	0	0	82	60	72	34	32	55	64
STRO	0	1	0	0	0	4	0	0	0	0	3	0	0	0	0	0	0	0
TRBO	0	2	0	0	0	1	0	0	1	4	4	0	0	0	1	0	0	0
TRCE	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
VAAN	4	0	0	5	5	0	0	0	3	10	0	4	5	5	9	5	5	5
VAMA	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
VAUX	6	0	4	1	3	0	5	5	0	0	0	1	4	0	2	1	2	5
VIOL	0	1	0	0	0	1	0	0	0	0	3	0	0	0	0	0	0	0
VITE	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VIIK	0	1	U	U	0	U	U	U	U	U	U	0	0	0	0	0	0	0
	48	49	50	51	<u>52</u>	54	55	56	57	62	63	64	68	69	71	72	73	74
ABBA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	1
ACRU	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2	2	4	2
ACSP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	4	4
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0
ALKU	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ANCI	0	0	0	1	1	0	0	0	0	0	0	0	0	0	· 0	2	0	0
ANOLI	0	n	0	1	1	0	0	2	0	0	2	5	0	0	0	0	0	0
ARNU	0 0	n	n	0	0	0	0	0	0	0	0	0	0	1	0	0	2	0
ASMA	õ	Ő	õ	0 0	n	0	0	0	0	0	0	0	0	1	4	5	6 01	7
ASCA	õ	õ	õ	õ	õ	õ	ñ	ñ	ñ	n	ñ	0	0	11	10	14	21	4
ATFE	0	0	Ō	Õ	Ő	õ	Õ	Ő	õ	õ	ñ	õ	ñ	ñ	n	1	1	1
BEPA	0	0	0	0	0	2	Ō	Õ	Õ	õ	õ	õ	Ő	õ	õ	Ô	0	0
BLIT	12	5	18	3	3	16	30	13	5	1	8	Õ	8	15	20	32	34	24
CHCA	0	0	0	17	9	10	2	5	20	20	12	24	5	0	0	0	0	0
CLBO	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5	3	2	2
COCA	0	1	2	0	0	0	0	0	0	0	0	0	0	17	5	4	3	4
COCO	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	2	2	5
COGR	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
COMP	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	2	1
	0	0	0	U	0	U	0	U	0	0	0	0	0	0	0	0	2	1
FOUL	0	0	0	0	U O	0	U	U	U	U	U	U	0	0	2	3	1	2
FRIO	0 N	0	0	U Q	0	0	0	0	U	U	0	U	0	U	0	3	2	1
FRVE	ñ	õ	0	0	0	0	0	0	0	0	24 0	0	0	1	U	U	U	0
FUNG	3	õ	õ	õ	1	õ	õ	4	3	0 0	0 D	0	2	1	U O	2	4	1
GAHI	1	2	3	õ	4	ž	6	3	4	Ő	õ	õ	5	1	0	0	n	0
									-	-	-	-	-	-	-		0	~

Table 3.3 cont. - Sites 48 through 74

	48	49	50	51	52	54	55	56	57	62	_63	_ 64	68	69	71	72	73	<u>74</u>
GAPR	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
GATR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	4	1
GLIT	4	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0
GRAS	10	5	2	1	17	5	0	0	0	17	6	0	1	2	2	1	4	5
KAPO	0	0	0	5	0	0	0	2	2	1	8	4	2	0	0	0	0	0
LALA	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEGR	6	1	11	34	36	22	4	34	17	7	12	6	4	0	0	0	0	0
LICH	1	1	0	0	1	0	1	2	0	0	1	1	0	0	1	0	0	0
LOCA	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	2	1	0
LYCL	0	7	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
LYCO	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	2
LYOB	7	0	0	0	0	0	0	0	0	0	0	0	0	3	2	5	-1 -1	3
MAAP	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2
MACA	0	0	0	0	0	0	0	Ű	0	10	1	Ű	0	5	5	4 /	4 5	2
MOSS	13	6	38	2	5	0	18	6	4	12	1	0	9	5	5	4	2	0
OSCI	0	0	0	0	0	0	U	0	U	0	0	0	0	0	Ň	1	0	5
OSCL	0	0	0	0	0	0	0	0	U	0	0	0	0	1	0	0	ň	0
PIBA	0	0	0	0	0	0	0	U	0	0	0	7	1	0	0	0	ñ	Ő
PIMA	1	0	0	6	1	1	4	1	3	4	0	0	0	n	ñ	ñ	õ	Ő
PIST	0	0	0	0	0	0	0	1	0	0	0	0	0	õ	õ	Ő	1	1
POIK	0	0	0	0	4	5	0	n n	n	n n	õ	Ő	Ő	Ő	Ő	Õ	Ō	Ō
	0	0	0	0	- 4	0	0 0	ں م	ñ	õ	ŏ	õ	Õ	1	1	Ō	0	0
PKPE	0	0	0	0	0	ñ	ñ	õ	Ô	Ő	Õ	Ő	Õ	Ō	0	0	1	0
PTAO	0	ň	0 0	õ	ŏ	1	õ	õ	Ő	0	Ō	0	0	2	4	0	1	3
OUBO	0 0	ñ	ñ	õ	Ő	Ô	õ	Õ	Ō	Ō	0	0	0	1	0	0	0	0
RIBE	õ	õ	Ő	Õ	Ō	0	Ō	0	0	0	0	0	0	0	0	3	0	0
ROSA	õ	Ő	Ő	Ő	Õ	Ō	0	0	0	0	0	0	0	0	0	0	1	1
ROCK	Õ	Ō	0	0	0	0	0	0	0	0	0	0	0	5	5	0	0	0
RUBU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	4	2	4
SAPU	0	0	0	0	0	0	0	2	2	3	1	7	0	0	0	0	0	1
SEDG	2	14	6	0	1	0	2	5	14	6	0	34	10	0	2	0	0	0
SMTR	10	5	4	2	0	7	6	2	0	0	0	0	1	0	0	0	0	0
SPHA	64	48	38	74	86	62	38	68	72	66	56	56	62	1	1	0	0	0
STRO	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	5	4	4
TRBO	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	5	4	4
VAAN	0	2	0	0	0	4	5	2	0	0	0	0	0	7	3	0	1	1
VAMA	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
VAOX	0	1	1	3	2	2	2	4	4	4	3	4	5	1	2	2	3	3
VIOL	0	0	0	0	U	0	0	U	0	U	U	0	U	1	2	5	0	0
	75	77	79	80	81	82	83	84	85	86	87	88	89	90	92	93	<u>94</u>	<u>95</u>
ABBA	3	1	3	0	2	0	1	0	0	0	0	0	0	1	1	· 1	0	0
ACRU	5	2	3	2	3	1	4	5	4	0	0	2	1	5	1	2	1	0
ACSP	7	4	9	2	8	1 2	3	1	2	0	0	1	1	0	2	4	0	0
ACTA	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0
AMEL	1	0	2	0	2	0	0	0	0	0	0	0	0	0	1	1	0	0
ANQU	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
ARNU	4	4	14	7	6	8	6	8	0	0	0	4	0	0	5	3	6	2
ASMA	14	2	14	18	31	48	22	23	30	10	7	12	3	13	10	12	36	26
ASCA	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ATFE	1	5	2	10	0	0	0	0	0	0	0	1	0	0	Ű	6	0	0
BEPA	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	10	1/
BLIT	20	46	14	6	32	18	24	22	24	- 22	30	42	24	24	32	26	10	10

Table 3.3 cont. - Sites 75 through 95

	<u>75</u>	77	79	80	81	82	83	84	85	86	87		89	90	92	93	94	95
CLBO	2	5	3	1	0	1	0	0	1	0	2	4	4	2	6	4	1	0
COCA	4	4	8	0	0	2	0	1	2	6	0	4	8	4	4	3	4	3
coco	2	0	1	1	0	0	2	1	0	2	3	3	1	3	7	6	5	9
COGR	2	3	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
COMP	1	0	3	5	1	0	0	1	1	0	0	1	0	0	0	2	4	1
COST	0	0	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0	1
DILO	2	0	8	3	2	3	3	0	1	1	1	1	2	0	1	1	1	1
DRYO	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EQUI	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FRVE	4	0	5	5	1	3	1	0	0	0	0	0	0	1	0	0	1	2
FUNG	0	0	0	1	0	0	0	1	1	1	3	3	1	2	0	1	0	0
GACI	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GAPR	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
GATR	2	2	4	4	3	4	4	0	0	0	0	0	0	0	0	4	1	2
GLIT	0	6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRAS	6	2	3	5	4	5	5	1	4	5	3	2	1	5	5	4	4	7
IMBI	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAOC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
LAVE	0	0	U	0	1	6	2	0	0	0	0	0	0	0	0	0	0	0
LEGK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	1	0	0	0	U	2	0	0	0	0	0	0	0	0
	0	1	4	0	0	2	0	1	0	0	1	0	0	0	0	0	0	0
IVAN	0	5	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
IYCI	ñ	1	ñ	ň	0	0	0	0	0	0	0	0	0	0	3	1	0	1
LYOB	ň	2	2	ň	n n	0	ň	3	4	4	2	4	4	4	0	0 2	5	1
MAAP	ñ	1	õ	ň	ñ	ñ	ñ	0	1	-	0	0	0	0	0	0	5	1
MACA	5	3	ž	ž	4	3	วั	2	ň	0	ň	2	0	0	4	1	0	1
MINT	Ő	õ	õ	1	0	õ	ñ	ō	ñ	0 0	0 0	0	0	ñ	0	- 1	0	1
MOSS	6	7	7	2	5	6	6	4	11	4	5	4	17	6	2	1	0	2
OSCI	Õ	0	0	5	Õ	Ő	õ	ō	0	Ō	ő	Ō	0	õ	ñ	Ô	ñ	ñ
OSCL	1	1	1	Ō	Ō	0	Õ	õ	Ő	Ő	õ	ŏ	ŏ	õ	ž	õ	1	ŏ
PEPA	0	0	1	2	0	0	0	0	Ō	0	ō	Ō	ō	Ō	1	Õ	ō	Õ
PIBA	0	0	0	0	0	0	0	0	0	1	0	1	0	0	Ō	Ó	Ō	Ō
PIRE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
POTR	0	1	2	1	5	1	3	4	0	0	0	0	0	0	3	1	1	1
PTAQ	0	0	7	2	0	1	2	20	7	4	0	0	0	0	1	3	4	3
PYEL	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QUBO	0	2	0	0	0	0	0	0	1	0	0	0	0	4	0	0	0	0
RIBE	0	0	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSA	0	0	0	1	3	1	0	1	0	0	0	0	0	0	1	0	3	0
ROCK	1	2	0	0	4	1	2	3	7	18	1	3	8	1	0	0	0	0
RUBU	5	3	7	6	0	4	5	0	0	4	1	2	1	1	1	3	3	8
SAMA	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
SAPU	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SEDG	1	1	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0
SPHA	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
STRO	4	3	5	1	2	3	4	1	0	0	0	1	0	0	5	5	1	0
IKBO	5	4	5	2	0	2	1	3	4	0	2	3	0	2	4	4	0	1
	1	U	2	U	U	U	U	3	5	5	U	2	3	2	0	2	0	6
	5	4	3	1	1	3	U	3	U	U	U	1	1	U	2	2	1	1
VITD	0	0	0	1	0	U O	0	0	0	U	U	U	U	U	U	U	U	Û
VTCH	0	0	0	1	0	0	0	0	U	U A	U	0	U	U	U	U	U	Ű
VICT .	U	U	U	U	v	U	U	U	U	U	U	U	U	U	U	U	U	- 2

Table 3.3 cont.

	96	97	98	<u>99</u>	100	101	102	103	105
ABBA	5	4	5	0	0	0	0	0	0
ACRU	6	3	0	0	0	0	0	0	0
ACSP	1	0	0	0	0	0	0	0	0
AMEL	0	0	1	0	0	0	0	0	0
ANGL	0	0	0	0	0	0	0	5	1
ARNU	2	2	0	0	0	0	0	0	0
ASMA	17	36	38	20	0	0	0	0	0
BLIT	31	11	14	42	17	35	8	2	9
CHCA	0	0	0	0	0	0	4	15	0
CLBO	1	2	0	0	0	0	0	0	0
COCA	8	4	0	4	0	0	0	0	0
COCO	1	1	3	3	0	0	0	0	0
COGR	1	2	0	0	0	0	0	0	0
COMP	2	1	1	0	0	0	0	0	0
DILO	2	8	1	1	0	0	0	0	0
EOUI	1	0	0	0	0	0	0	0	0
FRVE	4	4	1	1	0	0	0	0	0
FUNG	0	0	0	0	5	2	3	3	5
GACI	Ó	1	0	0	0	0	0	0	0
GAHI	0	0	0	0	2	1	4	1	3
GATR	2	1	1	0	0	0	0	0	0
GRAS	4	3	3	5	0	0	6	0	2
KAPO	0	0	0	0	0	0	1	5	0
LAOC	0	0	2	0	0	0	0	0	0
LAVE	0	1	0	0	0	0	0	0	0
LEGR	0	0	0	0	0	0	8	10	6
LIBO	0	0	1	0	0	0	0	0	0
LICH	0	0	0	0	0	0	0	1	0
LOCA	0	0	1	0	0	0	0	0	0
LYAN	2	0	9	1	0	0	0	0	0
LYCL	0	0	1	0	0	0	0	0	0
LYCO	0	0	0	1	0	0	0	0	0
LYOB	3	3	6	1	0	0	0	0	0
MACA	6	5	3	0	0	0	0	0	0
MOSS	3	2	3	4	10	10	10	9	16
PIMA	0	0	0	0	0	0	3	8	3
POTR	1	0	3	0	0	0	0	0	0
PTAQ	6	18	7	9	0	0	0	0	0
ROSA	1	0	2	1	0	0	0	0	0
RUBU	4	3	2	5	0	0	0	0	0
SAPU	0	0	0	0	0	0	0	4	0
SEDG	1	2	0	1	20	1	6	26	11
SMTR	0	0	0	0	2	0	2	1	3
SPHA	0	0	0	0	60	36	50	60	70
STRO	1	2	1	1	0	0	0	0	0
TRBO	5	2	2	0	0	0	0	0	U
VAAN	2	1	2	5	1	0	0	0	0
VAOX	0	0	0	0	1	2	4	5	5
VIOL	1	2	1	0	0	0	0	0	U

.

.

Table 3.4 - Cover by Stratum and Plot for Aspen Sites

Average percent coverage and standard deviation from the five subplots at each aspen site. Site is the site identification number, Canopy is coverage of trees over 2 meters tall, Subcanopy is the percent coverage of trees and shrubs between 1 and 2 meters tall, Understory is coverage of plants under 1 meter, and Dead Canopy is the amount of coverage by dead limbs or trees.

	Canopy		Subca	nopy	Unde	rstory	Dead	Canopy
<u>Site</u>	Avg	<u>Std</u>	Avg	Std	Avg	<u>Std</u>	Avg	<u>Std</u>
3	56.7	25.2	66.7	15.3	65.0	39.7	3.3	2.9
16	58.0	8.4	60.0	23.5	38.0	11.0	4.0	2.2
20	62 .0	11.0	36.0	21.9	64.0	16.7	5.0	0.0
21	44.0	11.4	44.0	20.7	70.0	15.8	2.0	2.7
36	46.0	5.5	15.0	7.1	76.0	20.7	7.0	7.6
69	68.0	4.5	7.0	2.7	70.0	7.1	4.0	2.2
71	68.0	8.4	11.0	11.4	68.0	14.8	5.0	0.0
72	6 0 .0	14.1	20.0	0.0	50.0	0.0	5.0	0.0
73	66.0	5.5	34.0	15.2	66.0	21.9	5.0	0.0
74	60.0	7.1	20.0	17.3	64.0	11.4	5.0	0.0
75	66.0	5.5	34.0	16.7	68.0	8.4	5.0	0.0
77	56.0	5.5	32.0	25.9	52.0	13.0	5.0	0.0
79	72.0	4.5	26.0	8.9	82.0	11.0	2.0	2.7
80	70.0	7.1	16.0	8.9	80.0	10.0	4.0	2.2
81	66.0	8.9	54.0	23.0	48.0	20.5	5.0	0.0
82	62.0	4.5	24.0	13.4	68.0	4.5	5.0	0.0
83	62.0	4.5	27.0	14.8	70.0	14.1	5.0	0.0
84	70.0	7.1	13.0	11.5	60.0	15.8	1.0	2.2
85	62.0	8.4	17.0	14.0	48.0	16.4	16.0	24.6
86	50.0	18.7	24.0	13.4	56.0	13.4	0.0	0.0
87	56.0	15.2	34.0	20.7	38.0	13.0	12.0	10.4
88	66.0	11.4	14.0	10.8	54.0	8.9	6.0	4.2
89	60.0	14.1	28.0	8.4	36.0	5.5	5.0	0.0
90	50.0	7.1	48.0	17.9	38.0	8.4	5.0	0.0
92	56.0	8.9	37.0	27.3	52.0	19.2	6.0	2.2
93	58.0	4.5	74.0	8.9	66.0	8.9	5.0	0.0
94	50.0	0.0	68.0	19.2	74.0	20.7	0.0	0.0
95	52.0	8.4	17.0	24 .1	80.0	18.7	2.0	2.7
96	70.0	7.1	3.0	2.7	64.0	13.4	5.0	0.0
97	62.0	8.4	4.0	4.2	83.0	14.0	4.0	2.2
98	56.0	5.5	18.0	16.0	88.0	7.6	5.0	0.0
99	50.0	18.7	66.0	8.9	46.0	8.9	3.0	2.7

Table 3.5 - Statistics for Sacrificed Aspen Trees

.

Values from aspen trees cut near to the study sites. Dbh is diameter breast height in centimeters; height is total height of tree in meters; doc is the depth of the crown, i.e., the height from the first leaf-bearing branches to the top of the tree in meters; leaf area is the total area of the leaves on the tree calculated from sampled branches with the standard error in square centimeters; and the tree biomass is calculated from sampled branches, with the standard error in grams.

dbh (cm)	height (m)	doc (m)	<u>leaf area (cm</u> 2)	<u>SE (la)</u>	<u>biomass (g)</u>	<u>SE (bm)</u>
0.9	2.20	1.78	1280.16	0.00	112.58	2.10
1.2	2.80	1.77	1766.12	165.46	168.70	24.25
1.4	3.43	2.14	3677.92	290.14	256.28	8.83
1.8	3.78	2.62	9708.01	1685.75	598.47	70.36
2.0	4.60	2.40	9043.15	814.04	567.40	19.03
2.2	3.10	1.80	11658.80	1771.70	606.54	16.69
3.4	5.70	4.43	20256.21	853.54	1909.26	37.94
3.4	5.35	4.05	32123.67	3891.72	1936.82	59.93
3.5	5.35	4.15	14072.01	818.25	1532.02	29.73
7.3	9.20	4.90	102891.09	19216.20	14346.30	621.48
9.1	9.40	4.42	83769.87	9591.30	11250.38	313.15
10.5	11.50	5.30	148084.39	11454.91	29413.23	966.04
13.0	16.10	5.05	109339.86	12714.04	54486.61	1178.68
13.7	15.90	4.65	108924.04	8857.67	60834.46	1118.45
15.1	16.70	6.95	91855.49	4814.76	67338.04	1262.27
15.4	17.40	7.10	138091.91	8771.01	80391.10	1515.08
15.8	15.60	5.40	193240.13	8073.15	71016.01	1280.61
17.3	15.50	8.40	218524.41	6802.89	73012.54	1162.92
19.4	23.00	10.30	312907.63	10882.57	171922.24	2513.05
19.5	19.35	7.40	175246.08	10190.74	107218.69	1803.00
21.5	23.10	5.75	182521.34	19549.84	177285.82	2196.16
22.5	22.50	7.25	500455.06	41004.35	238477.34	3218.93
22.6	18.10	7.40	287153.53	11609.84	191767.73	2248.49
22.8	22.40	6.60	422196.53	23861.99	233177.57	2992.33
23.0	22.50	8.70	382654.50	12988.99	237964.00	3036.38
25.1	23.80	8.85	273654.69	23332.50	274651.80	3343.34
25.2	22.50	8.80	241456.02	49253.56	270825.85	3766.19
27.8	23.50	16.25	745781.00	73361.20	448440.07	6264.33
30.2	23.50	10.05	743229.75	71937.20	437031.91	5502.92
32.1	23.80	8.90	531668.81	71937.81	456140.40	4753.74
32.4	23.50	12.80	1017735.38	91915.13	533887.77	5360.41
35.4	22.50	11.50	1228601.50	112045.76	559046.90	5050.19

Table 3.6 - Statistics for Sacrificed Spruce Trees

Values from spruce trees cut near to the study sites. Dbh is diameter breast height in centimeters; height is total height of tree in meters; doc is the depth of the crown, i.e., the height from the first leaf-bearing branches to the top of the tree in meters; leaf area is the total area of the leaves on the tree calculated from sampled branches with the standard error in square centimeters; and the tree biomass is calculated from sampled branches with the standard error in grams.

<u>dbh (cm)</u>	<u>height (m)</u>	<u>doc (m)</u>	<u>leaf area (cm²)</u>	<u>SE (la)</u>	<u>biomass (g)</u>	<u>SE (bm)</u>
2.9	2.90	1.66	8303.50	1307.83	957.73	59.84
4.1	3.70	3.60	28230.51	5520.61	3541.01	230.67
4.1	4.37	4.24	42984.57	18818.73	5251.89	445.79
4.4	4.20	2.61	19539.94	2915.01	3286.88	152.28
4.9	5.60	2.15	13361.46	2415.06	3720.22	320.19
5.1	4.15	1.90	18259.08	1675.77	4389.37	105.35
5.5	8.55	5.00	37405.26	4111.27	6242.02	260.35
5.7	6.00	3.10	46803.37	2895.23	6177.99	376.14
6.9	6.90	5.12	46080.43	6772.37	8869.33	233.97
8.2	9.35	3.55	34179.43	5821.31	14609.92	377.44
9.1	10.56	4.82	57286.88	7504.30	16967.75	622.87
9.2	11.70	3.40	50016.85	6077.54	19912.67	411.31
11.0	12.86	5.11	115016.66	12092.50	35581.93	581.85
11.0	10.90	7.50	115095.30	18986.75	31188.50	716.32
11.5	12.60	7.55	160659.06	15806.49	43375.69	942.15
12.1	11.00	4.00	93923.11	14070.42	32544.85	876.03
12.7	14.70	7.70	77944.05	17154.32	45656.59	1637.72
14.1	11.94	9.38	165289.27	27741.48	53860.68	2846.02
14.3	13.90	7.80	335712.03	29299.56	60976.55	1218.13
14.4	13.10	7.50	119594.65	21101.48	52109.21	1331.45
15.6	14.40	8.00	66331.88	6845.71	59780.82	917.52
15.6	13.10	8.15	115336.13	22047.93	62144.07	1152.50
16.4	11.80	8.50	438570.81	73382.71	70466.63	1878.40
18.1	19. 90	8.65	214715.11	36310.12	133180.07	2484.47
18.9	18.80	8.43	241654.33	34868.48	128709.13	2019.30
19.0	14.15	12.43	450936.09	69085.73	114136.00	2979.51
19.6	14.70	10.47	298449.13	45453.35	114821.05	3087.88
20.2	14.60	12.40	243767.86	27349.37	128890.17	3164.18
20.8	15.30	7.27	146029.06	24910.89	104981.92	2439.91
22.8	17.50	10.10	239635.28	37735.02	137075.67	2088.36
23.0	19.95	12.49	492978.78	60853.75	204608.74	6718.30

Table 3.7 - Aspen Biophysical Parameters

Area is the site area in square meters, Avg DBH and SD DBH are the average and standard deviation of the tree diameter at breast height in cm, Stems per m² standard deviation in kg/m^2 , NPP is the net primary production in $kg/m^2/year$, LAI and SD LAI are the one-sided leaf area index and its standard deviation, BAI and SD BAI are the boles and branches. Sub LAI is the This table contains data on the biophysical characteristics of the aspen sites. The Site column contains the site number, NT is the number of trees on the site, is the number of trees per square meter on the site, Basal Fraction is the ratio of bole area to surface area, BMI and SD BMI are the biomass index and its subcanopy leaf area index.

	Sub	<u>LAI</u> 0.201	1.080	0.500	1.393	0.193	0.264	0.210	0.315	0.655	0.417	1.324	0.987	0.936	0.550	1.218	0.645	1.026	2.378	0.578	0.799	3.055	0.297	0.571	1.180	1.169	1.818	1.990	0.599	•	·	•	•
ļ	SD	<u>BAI</u> 0.353	0.278	0.466	0.336	0.221	0.141	0.474	0.281	0.218	0.289	0.350	0.285	0.285	0.057	0.174	0.091	0.356	0.185	0.313	0.086	0.276	1.402	0.167	0.133	0.237	0.237	0.043	0.118	0.098	0.091	0.536	0.049
		<u>BAI</u> 1.286	1.498	1.144	1.096	1.020	0.568	0.914	2.026	1.920	2.136	1.992	2.098	2.066	1.412	1.752	1.726	1.562	0.510	1.956	0.268	0.668	1.884	0.690	1.886	2.062	1.618	0.218	0.262	1.782	1.936	1.912	0.174
	SD	LAI 0.253	0.235	0.436	0.789	0.236	0.436	0.391	0.345	0.236	0.273	0.326	0.281	0.307	0.254	0.241	0.269	0.317	0.465	0.336	0.324	0.466	0.568	0.611	0.279	0.265	0.259	0.243	0.455	0.285	0.384	0.406	0.205
		<u>LAI</u> 2.524	2.427	2.464	3.118	2.056	2.793	2.849	3.039	3.233	3.265	2.935	3.523	3.971	2.473	2.965	2.708	2.742	2.757	2.847	1.607	2.626	3.390	2.465	3.195	3.086	2.562	1.652	2.070	3.044	3.322	3.050	1.294
		0.563	0.667	0.736	0.590	0.538	0.855	0.786	0.922	0.812	0.947	0.882	0.853	0.881	0.624	0.702	0.711	0.682	0.529	0.985	0.308	0.999	1.199	0.887	0.864	0.825	0.686	0.213	0.258	0.860	0.896	0.811	0.190
	SD	IMB 885	034 () 869.1	1.842 () 086.(0.438 (0.270	0.933	0.886	1.173	060.1	1.000	1.110	1.025	0.722	1.087	1.415	0.211	1.052	0.162	0.618	0.663	0.686	0.871	0.894	1.256	0.109	0.226	0.767	0.953	2.349	0.109
		705 705	.433	.340	.122	.106 (.697 (.250 (3.164 (0.210 (.881	.648	2.159	.543	.804	7.820	5.171	5.674	1.279	5.657	0.812	3.128	3.860	2.299	8.350	0.941	6.888	0.726	0.959	6.887	8.785	9.455	0.622
		μ	13	10	11	œ	2	2	18	50	21	17	53	30	Ξ	1	16	22	-	22	Ŭ	. ,	.,		÷	ñ	Ę,			1	1	-	
	Basal	Fraction 0.00239	0.00272	0.00222	0.00195	0.00161	0.00112	0.00109	0.00367	0.00354	0.00382	0.00348	0.00377	0.00361	0.00232	0.00310	0.00303	0.00283	0.00087	0.00356	0.00048	0.00117	0.00148	0.00096	0.00341	0.00368	0.00296	0.00044	0.00052	0.00319	0.00347	0.00346	0.00035
ems	er	<u>m</u> 2 9450	9947	2978	4324	3475	0004	8148	6612	0643	4125	6015	0445	28151	36705	14423	20093	17408	10593	22879	57068	04665	61335	39027	18502	10743	08555	82232	26398	17209	16612	26062	.26926
አ	Þ	, "O	0.0	0.7	0.1	0.2	τη Γ	1.5	0.1	0.1	0.1	C	0.0	6	o	0	0	0	, eq	0	-	-		.	0	0	Ö		,	0	Ö	Ö	
	SD	<u>0 56</u>	8.87	7.16	8.48	6.85	1.40	1.19	4.83	7.19	7.34	4.83	6.29	9.26	7.54	10.05	9.28	10.27	0.73	6.78	0.69	1.58	1 64	1.38	8.67	6.25	7.85	0.61	0.67	7.79	5.65	10.17	0.71
	Avg	DBH 15 27	16.42	8.48	10.11	6.36	2.75	2.36	16.07	19.31	17.05	15.97	20.51	8.81	4.89	13.18	10.32	10.11	1.74	12.35	1 85	3 47		2.63	12.63	19.92	19.48	1.64	1.58	13.27	15.31	8.13	1.74
		<u>Area</u>	1005	1005	1005	1005	251	251	1005	1005	1005	1005	1005	1005	1005	1005	1005	1005	202	1005	193	181 181	220	214	1005	1005	1005	251	251	1005	1005	1005	251
		LN N	80	231	144	236	37	498	167	107	147	151	101	381	340	145	2.00	1 1 1 1	249 949	230	35	100	370	262	18	108	8	458	2695	173	167	262	319
		Site	<u>ب</u> ا ر	22	3 5	18	59	35	; 2	: 2	74		55	22	ີ	8 œ	5 8	3 8	3 2	5 8	3 %	8 6	òã	3 2	5	6	4 S	76	: ዩ	8	26	86	66

<u> Table 3.8 - Spruce Biophysical Parameters</u>

This table contains data on the biophysical characteristics of the spruce sites. The Site column contains the site number, NT is the number of trees on the site, Area is the site area in square meters, Avg DBH and SD DBH are the average and standard deviation of the tree diameter at breast height in cm, Stems per m^2 is the number of trees per square meter on the site, Basal Fraction is the ratio of bole area to surface area, BMI and SD BMI are the biomass index and its standard deviation in kg/m^2 , NPP and SD NPP are the net primary production and its standard deviation in $kg/m^2/year$, LAI and SD LAI are the leaf area index and its standard deviation in $kg/m^2/year$, LAI and SD LAI are the leaf area

	Lů Lů	LAI	0.340	0.181	0 477	0 383		CVC 0	0 644	0.455	0.313	0.283	0.476	0.761	0.757	0 795	1114	1 109	0.454	0.588	0.625	0.785	0.329	0.495	0.211	0.290	0.186	1.042	0.931	1.689	1.228	0.222	0.761
		LAI	2.884	0.484	3.266	2 692	0.730	0.697	2,691	1.319	2.847	2.279	2.791	3.085	1.996	2 700	3.736	3.730	1.685	3.034	2.444	3.091	1.834	2.595	0.592	0.842	0.521	3.475	4.001	5.423	3.670	0.709	4.260
	SD	NPP	0.0412	0.0123	0.0351	0.0546	0.0061	0.0141	0.0281	0.0381	0.0301	0.0311	0.0457	0.1002	0.0464	0.1327	0.0510	0.1144	0.0361	0.0520	0.0618	0.0560	0.0304	0.0395	0.0177	0.0142	0.0229	0.0350	0.0634	0.0592	0.0431	0.0281	0.0666
		<u>dd</u> N	0.3248	0.0394	0.4323	0.3476	0.0632	0.0582	0.2951	0.1176	0.3492	0.2584	0.3303	0.3575	0.1799	0.4044	0.4097	0.4324	0.1739	0.3747	0.2665	0.3603	0.2152	0.3191	0.0505	0.0706	0.0488	0.3822	0.5375	0.5718	0.3456	0.0663	0.5378
	SD	BMI	0.830	0.127	0.587	0.675	0.192	0.200	0.600	0.421	0.517	0.455	0.716	1.253	0.465	1.665	0.821	1.746	0.501	0.574	0.869	0.818	0.345	0.539	0.175	0.232	0.209	0.515	1.046	0.871	0.736	0.283	0.892
		BMI	12.378	0.678	13.643	10.680	1.093	1.032	6.790	2.373	11.135	7.314	8.696	8.446	3.527	9.149	10.088	10.363	3.620	10.036	5.565	8.578	5.280	8.293	0.894	1.274	0.877	8.719	15.046	13.500	7.246	1.349	15.136
	Basal	Fraction	0.00317	0.00032	0.00372	0.00288	0.00046	0.00041	0.00240	0.00097	0.00308	0.00218	0.00268	0.00278	0.00156	0.00285	0.00360	0.00369	0.00131	0.00318	0.00193	0.00287	0.00168	0.00262	0.00039	0.00051	0.00035	0.00325	0.00455	0.00487	0.00292	0.00050	0.00447
Stems	per	<u>m</u> 2	0.1/50/	0.16413	0.24669	0.22381	0.26062	0.25564	0.46951	0.37700	0.18303	0.25863	0.36305	0.53387	0.58249	0.33953	0.71152	0.67641	0.37799	0.35588	0.55165	0.52942	0.25569	0.31502	0.19596	0.31930	0.14821	0.66002	0.45473	1.07430	0.91716	0.19994	0.42435
	SD	<u>DBH</u>	4.43	7.11	4.13	3.83	2.06	1.98	3.35	2.50	5.73	5.80 19	4.79	3.65	2.50	3.19	3.18	3.41	3.04	3.91	3.46	3.44	4.29	3.89	2.15	91.2 0	2.06	7.83	2.66	2.3/	2.34	88.5	3.77
	Avg	DBH 11 EX	14.02		13.22	12.21	4.24	4.05	7.33	5.15	13.49	8.6U	8.4	27.2	5.29	58.4	7.38	7.61	5.92	9.92	5.7	۲. ۲.	80.0 6	9.52	70.4	9.74 100 1	50.0 7	04.7	86.01 2 2 2	72	76.0	4.86	10.40
		Area			501 5	1005	1005	1005	1005	1005	1005	Sol	70/ 20/	\$ }	4 62	000	427	42/	901 201	865 F	/41	ŝ	80. 20.	112	1005		c MI	124	70 1	<u>a</u> 5	3/1 1/01	507 707	170
		NT 176	165	310	6 1 0	12	262	2	4/7	6/5	<u>8</u> 2		57	82	697	1	49 8	607	200	341 190	\$ } ;	170		/07	121	170	<u>5</u> 5	707	710		<u>}</u>	102	740
		Site	15	1 -	1	<u></u>	<u>8</u>	5	8	ς, ;	1 1	4	Ĵ f	ç Ç	4/	ç (44 U	5 1	កីរ	70	# 1	R R	5	6	7 6	33	7 0	85	35	55	701	501	1

Table 3.9 - Aspen Canopy Phenology

This table contains measurements of the green leaf coverage during the spring of 1984 for two aspen sites. The canopy was photographed from below at two locations at each site on several days during the spring. Coverage was determined from the photographs and scaled such that 0 is no leaves and 1 is the maximum leaf coverage.

Site is the site number, Day is the day of the year the photos were taken, View is the position of the camera at the site, Cover is the scaled coverage, and GDD is the number of growing degree days (difference between daily average temperature and 40 degrees Farenheit, when positive, summed for the year to that day).

<u>Site</u>	<u>Day</u>	<u>View</u>	<u>Cover</u>	<u>GDD</u>
16	136	1	0.304	188
16	136	2	0.090	188
16	139	1	0.554	231
16	139	2	0.382	231
16	145	1	0.739	300
16	145	2	0.809	300
16	148	1	0.891	306
16	148	2	0.843	306
16	152	1	0.967	376
16	152	2	0.888	376
16	161	1	1.000	554
16	161	2	1.000	554
93	137	1	0.000	208
93	137	2	0.000	208
93	139	1	0.123	231
93	139	2	0.068	231
93	146	1	0.189	302
93	146	2	0.205	302
93	149	1	0.557	308
93	149	2	0.466	308
93	155	1	0.962	436
93	155	2	0.966	436
93	161	1	1.000	554
93	161	2	1.000	554

Table 3.10 - Subcanopy Phenology

This table contains data on leaf expansion for the two major understory species in the SNF, mountain maple and beaked hazel. The size of all the leaves on selected twigs was determined for several days in the spring of 1984. A relative area was determined, by scaling the leaf areas between 0 for no leaves to 1 for maximum leaf extension.

Site is the study site number, Day is the day of the year, Rel Area is the relative leaf extension, and GDD is the number of growing degree days (difference between daily average temperature and 40 degrees Farenheit, when positive, summed for the year to that day).

<u>Site</u>	<u>Day</u>	<u>Rel Area</u>	GDD
16	132	0.008	153
16	135	0.010	177
16	138	0.011	223
16	142	0.039	272
16	144	0.122	299
16	147	0.167	306
16	151	0.238	355
16	155	0.742	436
16	160	0.923	544
16	164	1.000	606
93	138	0.015	223
93	145	0.046	300
93	148	0.152	306
93	153	0.381	394
93	157	0.799	486
93	160	0.910	544
93	164	1.000	606
Jout			

Mountain Maple

Beaked Hazelnut

<u>Site</u>	<u>Day</u>	<u>Rel Area</u>	<u>GDD</u>
16	132	0.008	153
16	135	0.014	177
16	138	0.042	223
16	142	0.086	272
16	144	0.259	299
16	147	0.330	306
16	151	0.539	355
16	155	0.777	436
16	160	0.950	544
16	164	1.000	606
Beaked Hazelnut (cont.)

Site	Day	<u>Rel Area</u>	<u>GDD</u>
93	132	0.009	153
93	136	0.020	188
93	138	0.079	223
93	145	0.160	300
93	148	0.186	306
93	153	0.393	394
93	157	0.860	486
93	160	0.964	544
93	164	1.000	606

·

4.0 Climate

Northern Minnesota has a humid continental climate with cold winters, cool summers, and precipitation scattered throughout the year. Continental climates characteristically have a great range in temperatures between the winter and summer. The average temperature is below freezing for 5 months of the year and extreme cold is frequent in the winter. The coldest temperature recorded for this region is -59 degrees F (-51° C). In the summer, hot periods occur with temperatures in the 90s. Although the summers are generally mild, midsummer frosts may also occur. Most of the precipitation falls during the 5 months from May to September. Often the precipitation during this time of year comes as thunderstorms. These storms may be quite powerful, producing strong winds called downbursts, which may be very destructive. In 1976, a downburst storm in the SNF destroyed forests in an area one fourth of a mile wide and 10 miles long. In the winter, almost all of the precipitation which falls comes as snow. Most of the snowfall occurs in the early months of the winter before the freezing of the lakes shuts off the major source of moisture to the atmosphere.

Table 4.1 - Monthly Climatological Data

The climatological data presented in the following table was collected by the National Weather Service in International Falls, Minnesota. International Falls is about 80 miles from the SNF, but the weather data is representative of the area. Total solar insolation measurements were made at Fall Lake Dam in Winton, Minn. by Prof. Donald Baker of the Department of Soil Science at the University of Minnesota, St. Paul. Insolation values were measured using a Yellow Springs solar cell calibrated against an Eppley Pyranometer. The data presented here are monthly summary values. The temperature columns contain the monthly averages of the daily minimum (Min), maximum (Max), and average (Avg) temperatures. All temperatures are in Fahrenheit degrees. The precipitation column contains the water equivalent of the total monthly precipitation in inches. The insolation column contains the monthly average of the daily values in Langleys. There are gaps in the insolation data (but not in the Weather Service data) and the Days column contains the number of days of insolation data available in each month.

	Tem	peratur	e (°F)			
<u>Date</u>	Min	Max	<u>Avg</u>	<u>Precip (in)</u>	Insolation	Days
JAN 76	-12.1	12.7	-0.3	0.99	121.7	31
FEB 76	3.0	26.1	14.6	0.46	207.5	29
MAR 76	7.3	30.9	19.3	1.82	280.1	31
APR 76	31.1	54.5	43.1	1.02	438.3	30
MAY 76	37.2	69.8	53.4	0.12	582.7	31
JUN 76	52.0	76.7	64.8	7.01	529.5	30
JUL 76	52.5	77.5	66.0	5.70	548.8	31
AUG 76	50.9	76.8	65.1	1.85	466.1	28
SEP 76	39.2	67.6	54.7	1.19	337.1	30
OCT 76	26.2	44.5	35.6	0.84	187.6	31
NOV 76	7.7	24.2	16.1	0.19	130.1	30
DEC 76	-14.4	8.0	-3.1	0.59	109.9	30
JAN 77	-15.6	4.1	-5.8	0.66	132.4	31
FEB 77	3.3	22.0	12.8	1.01	210.4	28
MAR 77	19.5	39.7	29.9	1.89	289.7	31
APR 77	30.0	55.6	43.1	1.01	424.5	30
MAY 77	47.3	73.7	61.2	5.81	483.0	31
JUN 77	50.9	72.5	62.1	4.20	468.5	30
JUL 77	54.5	78.7	66.9	2.16	462.9	31
AUG 77	45.0	69.0	57.1	3.01	399.7	31
SEP 77	44.0	61.0	52.8	6.81	240.1	10
OCT 77	32.6	53.9	43.5	0.80		
NOV 77	14.0	31.1	22.8	3.49	105.5	23
DEC 77	-4.8	11.8	3.5	0.98	86.3	31

Table 4.1 cont.

	Tem	perature	e (°F)			
Date	Min	<u>Max</u>	Avg	<u>Precip (in)</u>	<u>Insolation</u>	<u>Days</u>
IAN 78	-13.1	6.2	-3.4	0.78	149.2	31
FEB 78	-9.2	14.4	2.7	0.27	244.3	28
MAR 78	6.3	30.6	18.7	0.41	362.1	31
APR 78	26.6	47.4	37.3	1.12	429.4	30
MAY 78	42.2	68.7	55.7	3.86	460.0	31
IUN 78	46.7	72.4	59.9	2.89	483.2	30
ПП. 78	53.2	73.8	63.8	6.29	423.5	31
AUG 78	52.5	73.3	63.2	2.96	413.9	31
SEP 78	46.2	65.8	56.2	3.62		
OCT 78	33.7	53.7	43.7	0.39	225.5	24
NOV 78	10.8	30.2	20.7	1.60	130.7	18
DEC 78	-10.8	12.2	0.7	0.93		
TANI 70	-19 N	2.0	-86	0.58	139.0	12
JAIN 79 EER 70	-17.0	10.0	-0.6	1.03	188.8	15
FED 79 MAR 79	10.1	29.2	19.8	1.66	249.3	31
	24 5	43.5	34.2	2.70	352.6	25
$\frac{1}{1} \frac{1}{7}$	24.5	55.8	46.1	1.73	407.4	31
	47.6	71.0	59.7	4.06	467.0	30
JUN 79	54.4	78.4	67.4	1.08	481.2	27
	48 2	72.0	60.4	1.68	398.3	31
CEP 70	40.2	64.6	53.7	2.12	296.8	30
OCT 79	28.2	46.1	37.3	1.55	159.9	24
NOV 79	15.9	30.9	23.7	3.08	112.8	16
DEC 79	4.6	24.7	14.9	0.42		
JAN 80	-8.8	12.9	2.1	0.92	104 7	20
FEB 80	-2.1	18.2	8.2	0.55	184.7	28
MAR 80	3.5	30.0	17.0	0.90	341.6	31
APR 80	30.9	57.6	44.5	0.45	421.5	30
MAY 80	44.3	73.2	58.9	0.83	464.3	31
JUN 80	50.3	74.3	62.6	1.70	521.3	30
JUL 80	55.0	82.0	69.0	2.23	461.7	31
AUG 80	54.3	75.5	65.2	4.03	345.0	31
SEP 80	42.8	62.7	53.0	4.08	274.1	30
OCT 80	30.2	47.5	38.7	1.81	196.3	31
NOV 80	18.2	33.9	26.3	1.62	92.1	30
DEC 80	-5.5	14.5	4.6	0.56	78.9	30

Table 4.1 cont.

	Tem	peratu	re (°F)			
<u>Date</u>	<u>Min</u>	Max	Avg	<u>Precip (in)</u>	Insolation	Davs
JAN 81	-5.1	17.5	6.4	0.26	159.6	25
FEB 81	5.1	23.8	14.6	0.22	177.1	28
MAR 81	19.1	38.1	28.9	1.18	309.2	31
APR 81	29.9	51.9	41.1	1.49	361.5	30
MAY 81	40.6	66.0	53.6	2.47	475.3	31
JUN 81	50.6	72.4	61.7	3.71	409.7	30
JUL 81	55.7	81.5	68.8	2.33	490.5	31
AUG 81	56.9	78.7	68.1	2.03	384.1	31
SEP 81	43.4	64.6	54.3	4.12	306.7	30
OCT 81	31.5	48.6	40.4	2.86	168.9	31
NOV 81	27.0	42.8	35.2	0.67	113.7	30
DEC 81	3.0	18.0	10.6	0.76	77.9	31
JAN 82	-22.8	1.8	-10.6	1.24	127.5	31
FEB 82	-3.8	16.8	6.2	0.51	208.6	28
MAR 82	10.5	30.4	20.6	1.85	270.4	31
APR 82	24.8	50.3	37.8	0.56	446.2	30
MAY 82	43.6	66.6	55.4	3.58	381.6	5
JUN 82	45.6	69.3	57.7	2.69	469.9	15
JUL 82	56.0	78.5	67.6	3.05	417.9	31
AUG 82	48.6	72.7	60.9	2.74	367.2	31
SEP 82	42.7	63.0	53.5	4.00	266.4	30
OCT 82	36.8	52.2	44.8	2.76	151.5	31
NOV 82	16.4	29.5	21.7	1.45	110.5	30
DEC 82	6.2	23.6	15.1	0.28	72.2	31
JAN 83	2.6	19.8	11.3	0.36	93.8	31
FEB 83	7.7	25.4	16.7	0.98	125.1	28
MAR 83	20.7	34.9	28.1	0.72	265.9	31
APR 83	27.6	48.8	38.4	0.62	384.4	30
MAY 83	36.4	61.9	49.2	1.21	488.2	31
JUN 83	50.3	73.5	62.1	5.02	457.9	30
JUL 83	58.7	80.5	69.9	2.98	453.4	31
AUG 83	56.6	80.5	68.8	3.66	404 2	25
SEP 83	45.6	64.6	55.3	4.23	269.9	30
OCT 83	33.3	50.1	41.9	2.58	170 5	31
NOV 83	22.7	32.6	27.8	1.95	83.4	30
DEC 83	-13.5	4.9	-4.3	0.66	98 N	26
	_	-		0.00	20.0	4 0

Table 4.1 cont.

	Tem	oeratur	e (°F)			
<u>Date</u>	<u>Min</u>	<u>Max</u>	Avg	<u>Precip (in)</u>	<u>Insolation</u>	<u>Days</u>
JAN 84	-9.7	11.2	0.6	0.29	128.8	31
FEB 84	12.2	29.2	21.0	0.76	184.8	29
MAR 84	6.7	28.3	17.6	0.22	329.7	31
APR 84	31.7	56.3	44.3	0.89	409.8	30
MAY 84	36.0	60.9	49.2	1.77	394.8	25
JUN 84	50.8	72.2	61.8	6.50	417.2	30
JUL 84	53.0	77.2	65.4	2.14	480.6	31
AUG 84	55.6	79.7	67.9	1.30	399.4	31
SEP 84	38.2	59.7	49.2	1.14	262.1	30
OCT 84	36.9	52.2	44.8	4.11	145.3	31
NOV 84	17.3	33.8	25.8	0.91	112.9	30
DEC 84	-6.8	13.5	3.5	1.27	87.7	30
JAN 85	-10.9	10.8	0.0	0.38	113.1	31
FEB 85	-5.9	15.2	4.8	0.70	203.4	28
MAR 85	16.9	36.4	26.9	0.72	316.8	31
APR 85	30.8	52.8	42.2	3.17	377.3	30
MAY 85	42.4	66.1	54.5	6.31	548.2	3
JUN 85	43.7	64.7	54.5	6.51		
JUL 85	51.7	75.6	64.0	1.21	586.0	9
AUG 85	49.9	70.3	60.4	3.33	425.2	31
SEP 85	42.2	61.6	52.1	3.76	334.9	30
OCT 85	31.9	52.1	42.1	2.12	260.9	31
NOV 85	6.7	25.3	16.2	1.53	126.7	30
DEC 85	-8.9	8.5	-0.2	0.55	91.8	31
IAN 86	-2.2	17.5	7.8	0.61	150.4	31
FEB 86	-0.1	18.8	9.6	0.95	192.2	28
MAR 86	16.5	38.7	27.8	0.26	351.9	25
APR 86	32.7	53.7	43.5	3.33	443.9	30
MAY 86	43.2	68.7	56.4	0.50	559.4	31
JUN 86	47.9	72.9	60.7	3.67	625.3	30
TUL 86	55.9	77.4	67.0	2.59	498.0	31
AUG 86	48.8	73.5	61.4	1.52	472.9	31
SEP 86	43.0	61.9	52.8	2.42	304.8	30
OCT 86	31.6	51.2	41.7	0.64	197.5	31
NOV 86	11.3	28.5	20.1	1.27	154.3	30
DEC 86	6.1	25.6	16.1	0.35	129.5	31

5.0 Leaf Optical Properties

5.1 Introduction

Knowledge of the optical properties of the components of the forest canopy is important to the understanding of how plants interact with their environment and how this information may be used to determine vegetation characteristics using remote sensing.

During the summers of 1983 and 1984, samples of the major components of the boreal forest canopy (needles, leaves, branches, moss, litter) were collected in the Superior National Forest (SNF) of Minnesota and sent to the Johnson Space Center (JSC). At JSC, the spectral reflectance and transmittance characteristics of the samples were determined for wavelengths between .35 and 2.1 μ m using the Cary-14 radiometer. This report presents plots of these data as well as averages to the Thematic Mapper Simulator (TMS) bands.

There were two main thrusts to the SNF optical properties study. The first was to collect the optical properties of many of the components of the boreal forest canopy. The reflectance and transmittance properties of the leaves and needles of eight major overstory tree species and three understory shrubs were measured. Also, reflectance measurements were made for the bark of several tree species, sphagnum moss and leaf litter. The second goal of the study was to investigate the variability of optical properties within a species. Measurements of reflectance and transmittance of quaking aspen leaves and black spruce needles were made at three levels in the canopy and for three stand densities. The results of these studies allow a comparison of the optical properties of a variety of different species and a measure of the variability within species. These data provide basic information necessary to model canopy reflectance patterns.

5.2 Methodology

The vegetation samples were collected in the SNF and placed in zip-lock plastic bags. These bags were packed in cardboard boxes and sent to JSC by priority mail. Samples were collected from late August through September in 1983. In 1984, samples were collected on May 23, June 25 and August 14 and mailed the same day. It took between 3 and 6 days for the samples to reach JSC.

The handling of the samples at JSC evolved over time. In 1983 and early 1984, the samples were stored in plastic bags and refrigerated at JSC. Later, due to problems with too much wetness on the leaves, the branches were not refrigerated and their ends were put in water to keep the leaves alive.

The optical properties were measured using the Cary-14 system at JSC. The Cary-14 has a wavelength range between 0.35 and 2.1 μ m. The sampling interval varies between 0.002 and 0.01 micrometer, depending on the rate of change between the values in each

sample interval. Each measurement samples at approximately 250 different wavelengths.

Optical-property measurements were made for both the tops and bottoms of leaves. When leaf top or bottom is referred to in these observations it indicates the side of the leaf which is illuminated by the Cary-14. For observing broad leaves, a sample of the leaf without holes or visible defects was used; however, for needle leaves, either a collection of individual needles was aligned in the instrument holder or a section of twig with needles attached was used. Each of the spectra reported represents a single measurement of an individual leaf, needle, or bark sample.

The optical properties measured by the Cary-14 are displayed in Figures 5.1 through 5.41. An inventory of the data is presented in tabular form in Table 5.1. In Figures 5.19 through 5.23 and 5.32 through 5.35, averages and standard deviations of sets of data are plotted. Since the Cary-14 does not sample in exactly the same wavelengths in each measurement, the data were resampled using a one-dimensional, quasi-cubic hermite interpolation before averaging. Table 5.2 lists the Cary-14 reflectance and transmittance values averaged to Thematic Mapper Simulator wavelength bands.

5.3 Results

Three species of broad leafed deciduous trees were sampled: paper birch (Betula papyrifera), red maple (Acer rubum) and quaking aspen (Populus tremuloides). Figures 5.1 through 5.4 show the optical properties of the birch and maple. These plots are representative of the spectral pattern of green leaves. In the visible region (0.4 to 0.7 μ m), most of the radiation is absorbed by the leaf and little is reflected or transmitted. Reflectance and transmittance minima occur at approximately 0.45 and 0.65 μ m due to chlorophyll absorption. The near-infrared region (0.7 to 1.3 μ m) is characterized by very high reflectance and transmittance and low absorptance. The internal structure of the leaf determines the optical properties in this region. The middle infrared (1.3 to 3.0 μ m) is dominated by strong water-absorption bands at approximately 1.4 and 1.9 μ m. Reflectance and transmittance in the mid-infrared is related to the amount of water in the leaf.

All the birch and maple leaves were collected on the same day and received the same treatment. The leaf-top reflectance and transmittance are very close for all four samples in all wavelengths measured. However, there is a great deal of variation in the leaf-bottom transmittance. The differences in leaf optical properties for these four samples do not seem to be related to the differences in species or canopy height.

Quaking aspen leaves were sampled for three canopy heights and three stand densities. Aspen optical properties are plotted in Figures 5.5 through 5.23. A striking feature in these graphs is the differences between the optical properties of healthy and diseased leaves. For example, in Figure 5.5 the diseased leaf (line 7) has a much lower reflectance in both the near-and mid-infrared regions. This effect occurs even when the leaf appears green. In Figure 5.10, the leaf sample used for line 4 is described as being "most uniform in color and clean," but, once more, in the near and mid-infrared, the reflectance is much lower than for the healthy leaves. The diseased leaves also have a much higher transmittance in all wavelength bands.

The leaf-top reflectance for aspen (Figures 5.5, 5.10, 5.15 and 5.19) show that in the visible region, the high-density stand has a lower reflectance. In the infrared regions, the reflectances do not distinguish between stand density or crown height. The mid-infrared wavelengths show the most separability between the different samples. The variability between different aspen leaves is greater than the variability between the birch and maple samples. The leaf-top reflectances of the birch and maple match up well with aspen from the high-density stand in the visible. However, aspen has a much higher reflectance in the near infrared. In the mid-infrared, the birch and maple reflectances fall within the range of the aspen, but the aspen tends to have a slightly higher reflectance.

The aspen leaf-bottom reflectances (Figures 5.6, 5.11, 5.16 and 5.20) tend to be higher than the leaf-top reflectances in all wavelengths. In the visible, this is readily seen in the light color of the aspen leaf bottoms. The aspen leaf-bottom reflectances do not show any pattern based on canopy height or stand density. The leaf-bottom reflectance is similar between aspen, birch and maple in the visible, but in the infrared the aspen has the higher leaf-bottom reflectance.

Aspen leaf transmittance (Figures 5.7, 5.8, 5.12, 5.13, 5.17, 5.18, 5.21 and 5.22) is slightly greater in the infrared for high density stands versus low-density stands. The maple and birch leaf transmittances tend to be greater in all wavelengths than the aspen transmittances.

Bark reflectance for aspen (Figures 5.9, 5.14 and 5.23) varies greatly in all wavelengths. There are two spectral reflectance patterns for the bark. The first pattern has a steep jump in reflectance at 0.7 μ m and high near-infrared reflectance values. The second bark reflectance pattern does not have the jump at 0.7 μ m and increases monotonically through the visible and near infrared. Both bark types have similar patterns in the mid-infrared. The first type of bark tends to be found in the upper crown of the aspen. The second type of bark is found low in the aspen canopy, suggesting that it is older bark.

Five species of needle-leafed trees were sampled in this study: jack pine (Pinus banksiana), red pine (Pinus resinosa), larch (Larix laricina), balsam fir (Abies balsamea) and black spruce (Picea glauca). Figure 5.24 shows the needle-top reflectance for the larch, fir, jack and red pines. While the reflectance pattern is similar to broad leaves, the reflectance of the needles is much more variable in all wavelengths. The variability in needle reflectance is not just a function of species since jack pine has both high and low reflectance values. In the visible region, the red pine and larch reflectances are similar to broad-leaf reflectance, but fir and the low value for jack pine are much less. In the near-infrared plateau, there are two depressions occurring around 1.0 and 1.2 μ m. These depressions are also present in broad leaves but are less pronounced. Broad-leaf reflectance in the near infrared falls in the middle of the range of needle near-infrared

reflectances. In the mid-infrared region, broad-leaf reflectance is much higher than that of needles. The needle-bottom reflectance (Figure 5.25) has similar characteristics to the needle-top reflectance. In the visible region, fir has a greater bottom reflectance than top reflectance.

Needle transmittance (Figure 5.26) is much lower in all wavelengths than that of broad leaves.

While the reflectance of the bark of needle-leafed trees (Figure 5.27) shows a great deal of variability, the pattern of the reflectance is the same as that of aspen bark from the lower canopy. The needle-leaved tree bark does not show a jump at the visible near-infrared boundary as does some of the aspen bark.

Several samples of black spruce needles were measured to look at the variability of optical properties within a conifer species. In Figure 5.28, spruce needle-top reflectance is plotted. Spruce needle-top reflectance falls mid-range with other needle reflectances. Within spruce, needles from high-density stands have the highest reflectance in near and mid-infrared. Needles from a middle-density stand have lower reflectance in the near and mid-infrared, with reflectances of needles from a low-density stand being lowest in the near infrared and about the same as the mid-density needles in the midinfrared. Spruce-needle reflectance data taken in 1983 were of a combination of both the tops and bottoms of the needles (Figures 5.30 and 5.34). The results are comparable with the 1984 data in the near and mid-infrared, however the 1983 visible reflectances are much higher than the 1984 data. This is not due to the effects of needle-bottom reflectance in 1983 samples since the 1984 needle-bottom reflectances (Figures 5.29 and 5.33) in the visible are not much different than those of the needle tops, and are much lower than the 1983 visible reflectances. Spruce-needle reflectance (Figure 5.32) in comparison with aspen leaf reflectance (Figure 5.19) is a little lower in the visible, much lower in the near infrared, and greatly lower in the mid-infrared.

Spruce-needle transmittance (Figures 5.31 and 5.35) is slightly higher than other needle transmittance in the visible and near-infrared regions. In comparison with aspen leaf transmittance (Figure 5.21), they are nearly equal in the visible, spruce is slightly lower in the near infrared, and much lower in the mid-infrared.

Three species of understory shrubs were sampled: beaked hazel (Corylus cornuta), labrador tea (Ledum groenlandicum) and leatherleaf (Chamaedaphne calyculata) (Figures 5.36 through 5.39). Only leaf-top reflectance was determined for labrador tea and leatherleaf. The labrador tea and leatherleaf have very high reflectances in the near infrared compared to other leaves or needles sampled. The hazel has much lower reflectance in the near infrared. The water absorption bands at 1.4 and 1.9 μ m are not very deep for the hazel.

Sphagnum moss (Sphagnum spp.) reflectance (Figure 5.40) is extremely variable in all bands. The difference between samples may be caused by differences in location, moisture or type of sphagnum. Background reflectance can have a significant effect on

the total canopy reflectance. If sphagnum is the background, the reflectance may vary with place and time. This variable background can be an important complication in the understanding of reflectance images of the boreal forest regions. In contrast to the sphagnum reflectance is the reflectance of aspen leaf litter (Figure 5.41). The leaf litter reflectance is much different than that of the sphagnum and appears to be more like the needle-leafed tree bark (Figure 5.27).

Table 5.1 - Optical Properties Data Availability

This table provides an inventory of the Cary-14 spectrometer measurements of the optical properties of canopy components. The numbers refer to the number of samples measured, where each measurement is a single scan by the Cary-14. The values in the N/A column for the Reflectance and Transmittance refer to measurements of entire shoots.

	Plant	Reflectance			Transmittance			
<u>Species</u>	Part	<u>Top</u>	Bottom	<u>N/A</u>	<u>Top</u>	<u>Bottom</u>	<u>N/A</u>	
Jack Pine (Pinus banksiana)	Needle Bark	2 1	1		1			
Red Pine (Pinus resinosa)	Needle Bark	1			1			
Larch (Larix laricina)	Needle Bark	2 1	2					
Balsam Fir (Abies balsamea)	Needle Bark	1 1	1					
Black Spruce (Picea glauca)	Needle Bark	5 2	5	5			4	
Red Maple (Acer rubum)	Leaf Bark	2	2		2	2		
Paper Birch (Betula papyrifera)	Leaf Bark	2	2		2	2		
Quaking Aspen (Populus tremuloides)	Leaf Bark	17 10	17		17	17		
Beaked Hazel (Corylus cornuta)	Leaf Bark	1	1		1	1		
Labrador Tea (Ledum groenlandicum)	Leaf Bark	1						
Leatherleaf (Chamaedaphne calyculata)	Leaf Bark	1						
Sphagnum Moss (Sphagnum spp)		4						
Leaf Litter		1						

Table 5.2 - TM Band Averages

This table lists the Cary-14 reflectance and transmittance values averaged to Thematic Mapper Simulator wavelength bands. The Thematic Mapper Simulator bands are:

TM 1	0.45 - 0.52 μm
TM 2	0.52 - 0.60 μm
TM 3	0.63 - 0.69 µm
TM 4	0.76 - 0.90 µm
TM 5	1.00 - 1.30 μm
TM 6	1.55 - 1.75 μm
TM 7	2.08 - 2.35 µm

A weighted average is calculated based on the width of the sampling interval for the Cary-14 measurements in each TMS band.

The file name is the unique name given to each sample measured. The Fig column refers to the figure number in this report with the plot of the Cary-14 data. The Line column gives the line type in the figure. The line types and numbers are displayed on each plot.

Jack Pine (Pinus banksiana)

File	<u>Fig.</u>	<u>Line</u>	<u>TM 1</u>	<u>TM_2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
Needle Reflec	ctance/To	p:							
PB0N2T1R	5.24	2	3.261	6.231	3.830	37.215	33.575 49.179	12.418 23 199	1.817 7.830
PBLR	5.24	3	6.201	12.710	6.237	54.517	49.179	20.177	
Needle Refle	ctance/Bo	ottom:							
PB0N2B1R	5.25	2	3.191	6.071	3.231	34.890	31.508	11.904	1.542
Needle Trans	smittance	:							
PBLT	5.26	1	0.416	1.956	0.581	33.547	30.364	10.354	0.806
Bark Reflecta	ance:								
PB0B201R	5.27	2	6.774	7.985	8.863	14.106	33.267	40.477	27.730
Red Pine (Pi	nus resin	osa)							
<u>File</u> Needle Refle	<u>Fig.</u> ectance:	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
PRLR	5.24	6	6.189	11.258	6.025	49.165	45.819	24.076	9.174

Red Pine (Pinus resinosa) cont.

<u>File</u> Needle Trai	<u>Fig.</u> nsmittance	<u>Line</u> e:	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM_4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
PRLT	5.26	2	1.451	4.902	1.523	36.916	34.441	14.639	3.245
Larch (Larix	laricina)								
<u>File</u> Needle Refle	<u>Fig.</u> ectance/Te	<u>Line</u> op:	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
LL0N2T1R LL0N7T1R	5.24 5.24	4 5	5.841 4.497	12.712 12.139	6.478 5.711	48.436 53.489	46.656 51.759	23.054 24.722	3.597 6.789
Needle Refle	ectance/B	ottom:							
LLON2B1R LLON7B1R	5.25 5.25	3 4	6.418 6.171	13.850 12.815	9.090 8.231	48.913 42.973	48.979 42.162	26.742 23.388	9.573 7.635
Bark Reflecta	ance:								
LL0B201R	5.27	3	8.753	10.275	12.029	18.185	32.206	45.939	22.064
Balsam Fir (A	Abies bals	amea)							
<u>File</u> Needle Refle	<u>Fig.</u> ctance/To	<u>Line</u> p:	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM_6</u>	<u>TM 7</u>
AB0N2T1R	5.24	1	2.636	5.526	3.537	29.542	29.545	14.661	5.038
Needle Refle	ctance/Bo	ottom:							
AB0N2B1R	5.25	1	9.758	16.270	8.973	53.960	51.091	25.496	10.067
Bark Reflecta	nce:								
AB0B201R	5.27	1	18.815	21.984	24.135	34.443	42.720	33.693	18.179

•

Black Spruce (Picea glauca)

<u>File</u>	Fig.	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
Needle Reflec	ctance/To	p:							
DMONIOT1D	5 28	1	4 248	9 4 3 3	4.307	50.277	47.278	19.773	6.062
PM3NZTIK	5. <u>2</u> 0 E 19	2	4.240	9 267	4 806	40.813	38.529	15.887	4.010
PMZNZTIK	5.20	2	4.470	9.044	1.000 1 111	37 707	35,588	15.862	4.737
PMIN211R	5.28	3	4.427	7.044 11 212	5.602	45 205	38 574	12.928	1.347
PMON7TIR	5.28	4	5.157 4.417	0 462	1 200	38 030	36 316	14 818	3.514
PM6N711R	5.28	5	4.417	0.403	4.290	50.950	50.510	11.010	0.011
Needle Refle	ctance/Bo	ottom:							
PM3N2B1R	5.29	1	4.708	8.642	4.614	42.400	39.919	18.027	4.607
PM2N2B1R	5.29	2	5.143	10.212	5.410	40.585	37.482	16.625	5.362
PM1N2B1R	5.29	3	5.051	9.259	5.179	35.166	33.418	15.752	5.961
PM0N7B1R	5.29	4	8.208	15.885	10.946	52.556	43.850	17.227	2.910
PM6N7B1R	5.29	5	4.294	8.182	5.342	34.705	36.008	17.259	6.543
Needle Refle	ctance (19	983):							
S60H01P	5 30	1	11 907	20.376	11.859	53.258	48.137	22.995	8.285
5001101R 560H02P	5 30	2	13 288	20.848	12.678	50.085	44.803	20.115	7.420
5001102K	5.30	2	7 4 9 9	12 840	8.284	40.393	37.999	18.210	6.924
SOUTIOSIN	5.30	1	6 702	12.010	7 508	44.566	40.602	19.296	8.027
SYYR	5.30 5.30	5	8.284	15.906	8.811	45.943	42.093	20.875	8.153
Maadla Trop	mittanco	(1083)							
Needle Tran	Shuttance	(1903)	•						
S60H01T	5 31	1	2.835	8.409	3.767	39.514	37.835	17.428	4.871
S60H02T	5 31	2	0.630	4.793	1.477	35.871	34.129	12.364	1.994
50011021 SV2T	5 31	2	2 272	4.825	2.444	39.123	38.014	15.689	2.014
SIZI SVVT	5.31	4	1 076	5 372	1.591	40.391	38.172	14.677	2.078
5111	5.51	-1	1.070	0107 =					
Bark Reflecta	ance:								
PM0B201R	5.27	4	2.571	3.038	3.744	9.428	24.091	20.944	5.704
Red Maple (Acer rubi								
File	<u>Fig.</u>	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
Leaf Reflecta	nce/Top:								
AR0L3T1R	5.1	3	5.065	10.526	5.240	45.877	44.065	30.479	11.234
AR0L3T2R	5.1	4	4.902	9.980	4.941	43.194	41.663	32.143	12.507

Red Maple (Acer rubum) cont.

.

<u>File</u> Leaf Reflect	<u>Fig.</u> ance/Bot	<u>Line</u> tom:	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
AROL3B1R AROL3B2R	5.2 5.2	3 4	18.105 13.010	24.817 19.677	17.170 12.437	44.201 39.091	43.466 37.504	31.703 29.823	14.862 12.551
Leaf Transm	nittance/	Тор:							
AR0L3T1T AR0L3T2T	5.3 5.3	3 4	1.965 3.641	11.072 14.068	2.976 4.620	44.660 48.453	46.654 49.356	38.835 45.262	19.600 16.978
Leaf Transn	nittance/1	Bottom:							
AROL3B1T AROL3B2T	5.4 5.4	3 4	1.556 4.328	7.752 15.339	2.123 5.306	34.481 51.469	36.248 53.185	29.149 49.676	12.075 29.916
Paper Birch	(Betula p	apyrifera	a)						
<u>File</u> Leaf Reflecta	Fig. nce/Top:	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
BPOL3T1R BPOL3T2R	5.1 5.1	1 2	5.698 5.036	11.945 10.802	5.526 4.939	44.065 43.751	42.892 42.322	32.234 32.768	15.287 15.537
Leaf Reflecta	ince/Bott	om:							
BPOL3B1R BPOL3B2R	5.2 5.2	1 2	11.976 10.833	19.835 17.416	13.014 10.135	38.042 37.106	37.694 36.519	29.428 29.534	14.430 15.528
Leaf Transm	ittance/T	op:							
BPOL3T1T BPOL3T2T	5.3 5.3	1 2	4.603 4.180	16.026 15.826	6.311 5.344	46.241 50.251	47.886 50.987	41.519 43.720	18.895 23.663
Leaf Transm	ittance/B	ottom:							
BPOL3B1T BPOL3B2T	5.4 5.4	1 2	4.481 4.940	15.937 17.912	6.042 6.341	48.297 54.888	49.809 55.588	43.198 49.488	14.323 31.447

Quaking Aspen (Populus tremuloides)

<u>File</u>	<u>Fig.</u>	<u>Line</u>	<u>TM 1</u>	<u>TM_2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
Leaf Reflectar	nce/To	p:							
A25H29RF	5.5	1	6.286	11.048	6.628	46.087	44.808	32.821	16.418
A26H21RF	5.5	2	6.626	11.321	7.425	50.530	49.552	35.794	18.491
A25M11RF	5.5	3	6.740	10.625	6.706	50.905	48.220	33.521	15.653
A26M11RF	5.5	4	6.117	9.699	6.870	50.762	48.392	34.765	16.447
A25L01RF	5.5	5	7.199	11.630	7.572	52.586	50.049	35.325	18.650
A26L01RF	5.5	6	7.384	11.607	7.451	52.068	49.925	36.866	19.107
PT3L2T1R	5.5	7	4.682	9.687	5.430	34.898	37.204	25.443	8.187
A27H21RF	5.10	1	7.774	13.218	7.861	52.664	49.637	34.669	15.785
A27M19RF	5.10	2	7.142	11.557	6.982	48.907	46.066	31.351	14.177
A27L01RF	5.10	3	6.723	10.468	7.119	52.056	49.194	33.069	14.544
PT2L2T1R	5.10	4	5.920	16.397	6.731	40.667	37.789	25.318	8.916
AXXH21RF	5.15	1	5.697	10.167	6.433	52.569	50.130	34.881	16.238
AXXM19RF	5.15	2	7.345	10.628	7.350	45.557	52.027	38.874	20.528
AXXL01RF	5.15	3	7.185	14.658	7.652	50.274	48.838	36.350	18.848
PT1L2T1R	5.15	4	5.790	15.112	6.080	36.246	33.319	22.306	8.616
PT1L3T1R	5.15	5	5.416	11.072	4.700	51.850	49.305	31.874	9.766
PT1L3T2R	5.15	6	7.391	13.098	6.948	51.826	50.402	38.561	18.028
Leaf Reflecta	nce/Bo	ottom:							
122120PR	56	1	13.065	21.033	14.371	49.432	47.594	36.615	21.961
A26H21RB	5.0	2	12 209	19.212	13.101	53.250	50.967	38.358	22.873
A 25M11RB	5.0	3	12 621	19.810	13.200	51.435	48.445	35.759	20.035
A 26M11RB	5.0	4	11 752	18.817	12.589	51.623	49.000	37.069	20.753
A 251 01 RB	5.0	5	12.851	20.194	12.922	53.351	50.427	37.747	22.273
A 261 01 RB	5.0	6	11.731	19.211	12.567	53.115	50.681	38.983	22.845
PT3I 2R1R	5.6	7	8,793	15.232	10.083	35.258	36.472	26.835	6.623
A27H21RB	5 1 1	1	13.841	23.272	15.126	54.215	51.292	38.205	21.493
A27M19RB	5 1 1	2	12.723	20.796	12.771	50.322	47.157	34.769	19.481
A271 01RB	5 11	3	13.639	22.536	14.776	52.789	49.731	36.609	20.624
PT2L2B1R	5.11	4	12.206	22.486	12.993	39.849	37.615	26.032	9.974
AXXH21RB	5.16	1	15.445	22.128	15.586	52.702	49.749	36.684	21.009
AXXM19RB	5.16	2	12.780	16.490	14.272	46.593	51.832	40.139	23.586
AXXL01RB	5.16	3	14.690	24.913	15.818	51.698	49.343	37.785	21.829
PT1L2B1R	5.16	4	8.666	17.639	9.382	33.788	32.604	22.825	11.263
PT1L3B1R	5.16	5	14.154	24.093	13.889	51.052	47.107	33.342	15.696
PT1L3B2R	5.16	6	12.363	20.792	12.134	50.091	47.482	38.427	19.638

Quaking Aspen (Populus tremuloides)

<u>File</u>	<u>Fig.</u>	<u>Line</u>	<u>TM 1</u>	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Leaf Transn	nittance	/Top:						<u></u>	<u></u>
		•							
A25H29TF	5.7	1	2.408	7.910	4.155	43.467	46.150	39.131	25,560
A26H21TF	5.7	2	1.475	4.916	2.808	41.232	43.716	36.259	22.073
A25M11TF	5.7	3	1.977	7.014	3.039	45.225	46.025	36.747	20 452
A26M11TF	5.7	4	1.679	6.140	2.868	46.152	47.286	40.024	24.415
A25L01TF	5.7	5	1.756	5.785	3.127	42.998	44.107	35.721	20.019
A26L01TF	5.7	6	1.712	5.302	2.765	40.383	43.008	36.339	22.341
PT3L2T1T	5.7	7	3.690	14.945	7.960	45.549	53.544	46.854	29.613
A27H21TF	5.12	1	2.053	8.196	3.791	47.764	43.470	35.750	22.140
A27M19TF	5.12	2	2.751	9.488	4.740	47.151	48.051	39.272	23.178
A27L01TF	5.12	3	1.526	6.185	3.189	41.046	41.741	33.446	19.033
PT2L2T1T	5.12	4	9.036	27.819	13.240	54.989	55.142	47.803	15.873
AXXH21TF	5.17	1	1.402	4.405	2.261	39.264	40.675	32.204	17 723
AXXM19TF	5.17	2	0.764	1.877	1.841	26.546	38.363	32.403	20.100
AXXL01TF	5.17	3	2.787	9.853	4.523	39.572	41.515	34.369	19.971
PT1L2T1T	5.17	4	9.109	28.886	14.053	54.971	58.744	52.361	34.680
PT1L3T1T	5.17	5	1.589	7.270	2.738	41.284	42.481	31.634	7.153
PT1L3T2T	5.17	6	1.777	6.635	2.591	40.231	41.544	37.129	19.402
Leaf Transm	ittance,	Bottom:							
A25H29TB	5.8	1	2.118	7.480	4.112	43.016	46.553	40.279	26.810
A26H21TB	5.8	2	1.580	6.704	3.031	46.368	47.341	37.903	20.532
A25M11TB	5.8	3	2.079	6.269	3.398	44.772	45.885	37.254	21.039
A26M11TB	5.8	4	1.573	5.426	2.660	44.821	46.243	39.359	25.159
A25L01TB	5.8	5	1.433	4.949	2.665	42.880	44.614	37.187	21.962
A26L01TB	5.8	6	1.594	5.445	2.972	43.132	46.087	37.834	22.224
A27H21TB	5.13	1	2.003	7.704	3.898	42.813	43.679	36.065	23.005
A27M19TB	5.13	2	2.420	8.363	4.343	46.232	47.712	39.830	24.094
A27L01TB	5.13	3	1.511	5.662	2.802	40.290	41.741	34.137	19.435
PT2L2B1T	5.13	4	8.680	27.590	12.075	56.943	57.613	48.410	15.542
AXXH21TB	5.18	1	1.480	4.760	2.785	41.611	43.161	33.169	17.479
AXXM19TB	5.18	2	0.926	2.515	2.014	26.733	37.334	31.944	19.958
AXXL01TB	5.18	3	2.711	9.881	4.378	42.189	43.975	36.798	21.875
PT1L2B1T	5.18	4	9.271	30.111	14.499	57.417	59.522	51.976	26.441
PT1L3B1T	5.18	5	1.532	6.527	2.265	39.082	39.450	29.472	10.807
PT1L3B2T	5.18	6	1.863	6.911	2.535	39.794	41.765	37.070	20.683

<u>File</u>	<u>Fig.</u>	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
Bark Reflecta	ince:								
A25HB1RF	5.9	1	16.203	21.441	21.738	71.859	66.736	37.195	21.683
A26HB1RF	5.9	2	25.821	32.494	36.779	71.587	66.835	41.696	28.893
A25MB1RF	5.9	3	16.136	19.960	19.534	62.522	58.079	35.439	23.267
A26MB1RF	5.9	4	16.975	22.435	24.790	67.643	64.433	39.141	25.323
A25LB1RF	5.9	5	18.073	19.878	22.479	31.104	38.871	43.223	37.276
A26LB1RF	5.9	6	21.154	24.083	27.413	39.297	52.271	48.308	30.854
A27HB1RF	5.14	1	12.422	17.312	18.337	62.955	59.913	30.887	18.303
A27MB1RF	5.14	2	14.346	17.549	19.611	26.897	48.769	32.898	20.681
A27LB1RF	5.14	3	13.710	17.930	18.975	56.822	55.245	33.141	20.449
PT0B200R	5.14	4	7.065	9.503	10.426	29.684	41.565	24.356	4.835
Beaked Haze	el (Corylus	cornu	 ta)						
<u>File</u> Leaf Reflecta	<u>Fig.</u> nce/Top:	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
CC0L3T1R	5.36	1	5.032	10.189	5.046	43.927	42.907	36.844	24.451
Leaf Reflecta	ince/Botto	om:							
CC0L3B1R	5.37	1	12.259	16.695	11.223	36.818	35.989	30.609	16.675
Leaf Transm	ittance/To	op:							
CC0L3T1T	5.38	1	2.905	11.394	3.991	43.216	46.199	43.754	31.136
Leaf Transm	nittance/B	ottom:							
CC0L3B1T	5.39	1	3.359	10.560	3.951	40.782	43.871	40.115	31.177
Labrador Te	a (Ledum	groen	landicum	ı)					
<u>File</u> Leaf Reflecta	<u>Fig.</u> ince/Top:	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
LG0L7T1R	5.36	2	5.835	15.080	6.289	63.527	64.294	41.256	18.050

Quaking Aspen (Populus tremuloides) cont.

Leatherleaf (Chamaedaphne calyculata)

<u>File</u> Leaf Reflecta	<u>Fig.</u> ance/Top	Line :	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
CH0L7T1R	5.36	3	5.760	13.149	6.325	66.766	63.900	38.129	12.713
Sphagnum 1	Moss (Spl	hagnum	spp)						
<u>File</u> Plant Reflect	<u>Fig.</u> tance/Toj	<u>Line</u> p:	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
SM00201R SM607T1R SM707T1R SM807T1R	5.40 5.40 5.40 5.40	1 2 3 4	6.172 15.608 4.806 5.266	11.838 29.521 11.209 11.393	14.263 24.383 7.445 12.794	27.062 61.302 32.156 48.649	29.836 65.386 26.639 49.280	12.181 51.722 6.244 22.533	1.579 17.664 0.835 4.016
Leaf Litter									
<u>File</u> Reflectance/	<u>Fig.</u> Top:	<u>Line</u>	<u>TM 1</u>	<u>TM 2</u>	<u>TM 3</u>	<u>TM 4</u>	<u>TM 5</u>	<u>TM 6</u>	<u>TM 7</u>
BL00201R	5.41	1	6.078	8.687	13.104	23.040	33.820	35.820	9.864

Table 5.3 - Figure Captions

Figures 5.1 through 5.4: Broad-leaf trees

Line	Description
1	Paper birch leaf from lower canopy, collected June 1984
2	Paper birch leaf from upper canopy, collected June 1984
3	Red maple leaf from lower canopy, collected June 1984
4	Red maple leaf from upper canopy, collected June 1984

Figures 5.5 through 5.8: Aspen leaves from high-density stand

<u>Line</u>	Description
1	Leaf from upper canopy of tree 25, collected 1983
2	Leaf from upper canopy of tree 26, collected 1983
3	Leaf from middle canopy of tree 25, collected 1983
4	Leaf from middle canopy of tree 26, collected 1983
5	Leaf from lower canopy of tree 25, collected 1983
6	Leaf from lower canopy of tree 26, collected 1983
7	Leaf described as "very mottled and probably diseased," collected May 1984

Figure 5.9: Aspen bark reflectance from high-density stand

<u>Line</u>	Description
1	Bark from upper canopy of tree 25, collected 1983
2	Bark from upper canopy of tree 26, collected 1983
3	Bark from middle canopy of tree 25, collected 1983
4	Bark from middle canopy of tree 26, collected 1983
5	Bark from lower canopy of tree 25, collected 1983
6	Bark from lower canopy of tree 26, collected 1983

Figures 5.10 through 5.13: Aspen leaves from middle-density stand

Line	Description
1	Leaf from upper canopy of tree 27, collected 1983
2	Leaf from middle canopy of tree 27, collected 1983
3	Leaf from lower canopy of tree 27, collected 1983
4	Leaf described as "most uniform in color and clean" of r

4 Leaf described as "most uniform in color and clean" of mottled leaves sent, collected May 1984 Figure 5.14: Aspen bark reflectance from middle-density stand

<u>Line</u>	Description
1	Bark from upper canopy of tree 27, collected 1983
2	Bark from middle canopy of tree 27, collected 1983
3	Bark from lower canopy of tree 27, collected 1983
4	Bark collected May 1984, stand density or canopy height unknown
	-

Figures 5.15 through 5.18: Aspen leaves from low-density stand

Line	Description
	Description

- 1 Leaf from upper canopy of tree XX, collected 1983
- 2 Leaf from middle canopy of tree XX, collected 1983
- 3 Leaf from lower canopy of tree XX, collected 1983
- 4 Leaf with dark spots, collected May 1984
- 5 Leaf from lower canopy, collected June 1984
- 6 Leaf from lower canopy, collected June 1984
- Figure 5.19: Average and plus-and-minus one standard deviation aspen leaf-top reflectance from all stand densities and canopy heights, not including diseased leaves, 14 samples used
- Figure 5.20: Average and plus-and-minus one standard deviation aspen leaf-bottom reflectance from all stand densities and canopy heights, not including diseased leaves, 14 samples used
- Figure 5.21: Average and plus-and-minus one standard deviation aspen leaf-top transmittance from all stand densities and canopy heights, not including diseased leaves, 14 samples used
- Figure 5.22: Average and plus-and-minus one standard deviation aspen leaf-bottom transmittance from all stand densities and canopy heights, not including diseased leaves, 14 samples used
- Figure 5.23: Average and plus-and-minus one standard deviation aspen bark reflectance from all stand densities and canopy heights, 10 samples used

Figure 5.24: Needle leaf-top reflectance

Line Description

- 1 Balsam fir, collected May 1984
- 2 Jack pine, collected May 1984
- 3 Jack pine, mixed tops and bottoms of needles, collected 1983
- 4 Larch, collected May 1984
- 5 Larch, collected August 1984

Figure 5.24 cont.

Line	Description
6	Red pine, mixed tops and bottoms of needles, collected 1983

Figure 5.25: Needle leaf-bottom reflectance

Line	Description
1	Balsam fir, collected May 1984

- 2 Jack pine, collected May 1984
- 3 Larch, collected May 1984
- 4 Larch, collected August 1984

Figure 5.26: Needle leaf transmittance

Line Description

- 1 Jack pine, mixed tops and bottoms of needles, collected 1983
- 2 Red pine, mixed tops and bottoms of needles, collected 1983

Figure 5.27: Needle-leafed tree bark reflectance

Line	Description
LINC	Description

- 1 Balsam fir, bark air dried, includes some white patches, collected May 1984
- 2 Jack pine, bark damp, measurement taken on driest piece, collected May 1984
- 3 Larch, collected May 1984
- 4 Spruce, collected August 1984

Figures 5.28 and 5.29: Spruce needle reflectance

LineDescription1Needles from high-density stand, collected May 19842Needles from middle-density stand, collected May 19843Needles from low-density stand, collected May 19844Collected August 19845Collected August 1984	<u>ine</u> 1 2 3 4 5	e <u>Description</u> Needles from Needles from Needles from Collected Au Collected Au	high-density stand, collected May 1984 middle-density stand, collected May 1984 low-density stand, collected May 1984 gust 1984 gust 1984
--	-------------------------------------	--	---

Figure 5.30: Spruce needle reflectance, mixed tops and bottoms of needles, collected 1983

Line <u>Description</u>

- 1 Needles from tree 60
- 2 Needles from tree 60
- 3 Needles from tree 60
- 4 Needles without tree identifier

Figure 5.30 cont.

- Line Description
 - 5 Needles without tree identifier

Figure 5.31: Spruce needle transmittance, mixed tops and bottoms of needles, collected 1983

- Line Description
 - 1 Needles from tree 60
 - 2 Needles from tree 60
 - 3 Needles without tree identifier
 - 4 Needles without tree identifier
- Figure 5.32: Average and plus-and-minus one standard deviation spruce needle-top reflectance from 1984 data, five samples used
- Figure 5.33: Average and plus-and-minus one standard deviation spruce needlebottom reflectance from 1984 data, five samples used
- Figure 5.34: Average and plus-and-minus one standard deviation spruce needle reflectance, mixed tops and bottoms of needles, from 1983 data, five samples used
- Figure 5.35: Average and plus-and-minus one standard deviation spruce needle transmittance, mixed tops and bottoms of needles, from 1983 data, four samples used

Figures 5.36 through 5.39: Shrub leaves

<u>Line</u>	Des	scriț	otion	
-	_		-	-

- 1 Beaked hazel, collected June 1984
- 2 Labrador tea, collected August 1984
- 3 Leatherleaf, collected August 1984

Figure 5.40: Sphagnum moss reflectance

Line	Description
	2000101010

- 1 Collected May 1984
- 2 Dry sphagnum moss, collected August 1984
- 3 Collected August 1984
- 4 Sphagnum moss from hummock, collected August 1984

Figure 41: Aspen leaf-litter reflectance

Figure 5.1 See Table 5.3 for description of line numbers.

Figure 5.2 See Table 5.3 for description of line numbers.

Figure 5.3 See Table 5.3 for description of line numbers.

Figure 5.4 See Table 5.3 for description of line numbers.

Figure 5.5 See Table 5.3 for description of line numbers.

Figure 5.6 See Table 5.3 for description of line numbers.

. جن

Figure 5.7 See Table 5.3 for description of line numbers.

Figure 5.8 See Table 5.3 for description of line numbers.

Figure 5.9 See Table 5.3 for description of line numbers.

Figure 5.10 See Table 5.3 for description of line numbers.

Figure 5.11 See Table 5.3 for description of line numbers.

Figure 5.12 See Table 5.3 for description of line numbers.

Figure 5.13 See Table 5.3 for description of line numbers.

Figure 5.14 See Table 5.3 for description of line numbers.

Figure 5.15 See Table 5.3 for description of line numbers.

Figure 5.16 See Table 5.3 for description of line numbers.

Figure 5.17 See Table 5.3 for description of line numbers.

Figure 5.18 See Table 5.3 for description of line numbers.

Figure 5.19 See Table 5.3 for plot description.

Figure 5.20 See Table 5.3 for plot description.

Figure 5.21 See Table 5.3 for plot description.

Figure 5.22 See Table 5.3 for plot description.

Figure 5.23 See Table 5.3 for plot description.

Figure 5.24 See Table 5.3 for description of line numbers.

Figure 5.25 See Table 5.3 for description of line numbers.

Figure 5.26 See Table 5.3 for description of line numbers.

Figure 5.27 See Table 5.3 for description of line numbers.

Figure 5.28 See Table 5.3 for description of line numbers.

Figure 5.29 See Table 5.3 for description of line numbers.

Figure 5.30 See Table 5.3 for description of line numbers.

Figure 5.31 See Table 5.3 for description of line numbers.

Figure 5.32 See Table 5.3 for plot description.

Figure 5.33 See Table 5.3 for plot description.

Figure 5.34 See Table 5.3 for plot description.

Figure 5.35 See Table 5.3 for plot description.

Figure 5.36 See Table 5.3 for description of line numbers.

Figure 5.37 See Table 5.3 for description of line numbers.

Figure 5.38 See Table 5.3 for description of line numbers.

Figure 5.39 See Table 5.3 for description of line numbers.

Figure 5.40 See Table 5.3 for description of line numbers.

5-58 (-2

Figure 5.41 See Table 5.3 for description of line numbers.

6.0 Helicopter MMR Data

6.1 Introduction

A major aspect of the ground data collection effort in the SNF during the summers of 1983 and 1984 was the acquisition of helicopter canopy reflectance measurements. Canopy measurements were made at numerous sites with a helicopter-mounted Barnes Modular Multiband radiometer (MMR). The MMR measures on the same wavelength bands as the Thematic Mapper Simulator (see Table 5.2). MMR data were collected on ten dates in 1983 and eight dates in 1984. An additional Barnes radiometer was used to make simultaneous reference panel measurements. The canopy reflectance was derived from the canopy and reference panel measurements. All canopy and reference panel measurements were made under clear sky conditions. A majority of the helicopter measurements were taken at nadir view, although some off-nadir view angle measurements were taken primarily over black spruce and aspen sites. The acquisition dates in 1983 were: May 5 and 16, June 9, July 12 and 13, August 12 and 14, and October 6, 26 and 27. The 1984 acquisition dates were: May 18 and 28, June 3, August 2, 3 and 16, and September 16 and 23.

6.2 Methodology

Reference panel measurements were used to convert voltages measured by the canopy instrument to reflectance factors. The reference panel was a surface painted with barium sulfate. The reflectance factor is the ratio of radiant flux of the canopy measurement to that of the reference or calibration panel under the same illumination and viewing conditions. Another component to be considered is atmospheric scatter, especially for aircraft measurements taken at higher altitudes. The amount of atmospheric scattering can be determined by using reflectance measurements of water targets. Assuming the reflectance of water is zero, reflectance measured at these targets is a measure of the amount of atmospheric scatter. Reflectance measurements over water targets are included for all acquisitions in 1983. However, no water target measurements were taken during the 1984 field campaign.

During the 1983 field campaign, the helicopter measurements were usually taken at an altitude of 122 meters (400 feet), with a few observations at 61 and 91.5 meters (200 and 300 feet). At an altitude of 122 meters and a radiometer field of view of 15 degrees, the canopy area being sensed is approximately 32 meters (105 feet) in diameter. In 1984, most measurements were taken at an altitude of 183 meters (600 feet). To measure the same canopy area at this altitude, the field of view was reduced to 10 degrees, although on two dates this was reduced further to 6 degrees. At 183 meters, the reduction of the field of view from 10 to 6 degrees reduces the canopy area being sensed from 32 to 19.2 meters (105 to 63 feet) in diameter.

6.3 Results

There are approximately 317 observations made over 105 different sites in 1983 and about 160 observations made over 29 sites in 1984. Tables 6.1 and 6.2 are a summary of the sites observed and the dates of observation for the 1983 and 1984 datasets, respectively. Each set of reflectance values for a site is actually the mean of observations taken over a given time interval and generally averaged between 16 and 20 separate measurements.

The summarized MMR data listed in Tables 6.3 and 6.4 includes: site number, number of observations averaged, code for altitude of instrument above the canopy (in hundreds of feet), the time (GMT) at which observations begin, the time at which observations end (each a six-digit number: the first two correspond to hours, the second and third two correspond to minutes and seconds, respectively), solar zenith angle, solar azimuth angle, and reflectance for each of the bands with standard deviations. Values of -1.0 signify missing data. All measurements were taken at nadir, except where otherwise indicated.

Figures 6.1 through 6.3 are reflectance plots for a sample set of black spruce and aspen sites. The black spruce sites, 14 and 15, are located within the same bog, and the aspen sites, 3 and 16, are located only about 80 meters apart. These sample plots were produced to note the differences in MMR band reflectance for aspen and black spruce at the beginning, middle, and end of the growing season. These plots show the consistency of the spectral reflectance of the spruce sites in comparison with the seasonal changes in the aspen. Another comparison between aspen and spruce sites may be seen in Figure 6.4, where values for the Normalized Difference Vegetation Index (NDVI) are plotted throughout 1983 for an aspen site (site 16) and a spruce site (site 14). NDVI is the difference between the reflectance in MMR bands four and three divided by their sum, and is related to the amount of green foliage present in the canopy. Figure 6.4 shows the aspen stand "greening up" in the spring and becoming senescent in the autumn, while NDVI in the evergreen spruce stand does not show a seasonal variation.

In 1984, MMR data were collected using off-nadir view angles to measure the bidirectional reflectance characteristics of the forests. Figure 6.5 shows the reflectances for three different view angles for a spruce and aspen site. In the backward scattering direction (view azimuth=0) both the spruce and aspen stands have higher reflectances in all channels because more of the illuminated foliage is seen. There is little difference between the nadir (view zenith=0) and forward scattering (view azimuth=180) views within each stand.

Figure 6.1 Spectral reflectance in each MMR band collected from the helicopter for two spruce and two aspen sites on May 15, 1983.

Figure 6.2 Spectral reflectance in each MMR band collected from the helicopter for two spruce and two aspen sites on July 12, 1983.

Figure 6.3 Spectral reflectance in each MMR band collected from the helicopter for two spruce and two aspen sites on October 6, 1983.

Figure 6.4 Normalized Difference Vegetation Index (NDVI) from helicopter MMR throughout 1983.

Figure 6.5 Spectral reflectance in each MMR band at three different view and zenith angles collected from the helicopter for spruce and aspen sites on September 16, 1984.

Table 6.1 - Helicopter MMR Availability 1983

Number of observations aquired for each site and date. Each row is for a given site and each column is a seperate date given by month and day.

Site $05/15$ $05/16$ $06/09$ $07/12$ $07/13$ $08/12$ $08/14$ $10/06$ $10/26$ $10/27$ $12/07$ 11111111111121111111111331111111114111111111151111111111611111111111011111111111311111111111141211111111111531111111111116111111111111201111111111112111111111111122121111111111261	_	Acquisi	tion Date	es 1983								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Site	05/15	<u>05/16</u>	06/09	<u>07/12</u>	<u>07/13</u>	08/12	<u>08/14</u>	<u>10/06</u>	<u>10/26</u>	<u>10/27</u>	<u>12/03</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1		[1	1		1	1	1		1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3		1	1		1	1	1	1	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1		1	•		1	1	×	1	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1		-							*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1		1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1		1							1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1		1							1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1		1		1	1	1	1	1		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1	-	1	_		1	_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1	2	1	1		1	1	1		1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	3		1	1		1	1	1	1	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 17	1		1 1	I		1	1	2	1	2	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1		1		1	1	1	1	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	3	1		1	1	1	1	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	U	1		1	4	1	1	1	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1		1		1	1	1	1	1	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	2	1		1	1	1			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1		1	1	1	1	1	1		1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1		1	1							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	1	1		1	1	1	1	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1				_	_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28					1	1	1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 20					1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39 40					I		1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41					1	1	1			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42					1	1	1			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43			1		1	1	-			•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45					1	2	1			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46					1	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47					1	1	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48					1	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49					1	1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50					1	1					
52 1 1 53 1 1 54 1 1 55 1 1 56 1 4 57 1 1	51					1	1	1			1	
54 1 1 55 1 1 56 1 4 3 57 1 1	52 52					L		1				1
55 1 1 56 1 4 57 1 1	55 54					1	1	1				
56 1 4 3 57 1 1	55					1	1					
57 1 1	56					1	4	2				
-	57					1	1	5				

	Acquisit	tion Date	es 1983								
<u>Site</u>	<u>05/15</u>	<u>05/16</u>	<u>06/09</u>	<u>07/12</u>	<u>07/13</u>	<u>08/12</u>	<u>08/14</u>	<u>10/06</u>	<u>10/26</u>	<u>10/27</u>	<u>12/03</u>
58							1				
59							1				
60					1	1					
61							1				
62					1	1					
63					1	1					
64					1	1					
65						1	1			1	
66						1	1			1	
67						1	1			1	
68					1	1	1	1	1		
69				1		1	1	1	' 1		
70				1							
71				1		1	1	1	1		
72					1	1		1		1	1
73				1		2		1		1	1
74					1	1					
75					1	1					
76					1	1					
77				1		1					
78					1	1					
79					1	1				1	
80					1	1	1			1	
81					1						
82					1						
83					1	1					
84					1	2	1			1	
85					1		1			1	
86					1						
87					1					-	
88					1					1	
89					1	1				1	
90					1	1		1		1	
91					1	1		1		1	
92					1	1		1		1	
95					1	1					
94 05						1					
95						1					1
90 07						1				1	1
97 08						1				1	
90 00			1			1					
100			1			1					
100						1					
101						1	1	2	1	2	
102						1	1	2	1	4	
104						1	1				
105						1	L		1		
106								1	1		
107								1	1		
								-			

	Acquisit	tion Date	es 1983								
<u>Site</u>	<u>05/15</u>	<u>05/16</u>	<u>06/09</u>	<u>07/12</u>	<u>07/13</u>	<u>08/12</u>	<u>08/14</u>	<u>10/06</u>	<u>10/26</u>	<u>10/27</u>	<u>12/03</u>
108								1	1		
111								1	1		
112								1	1		
113									1		
114									1		
115									1		
116										1	
117										1	
118										1	
119										1	
120										1	
121			*							1	
122										1	
124										1	
125										1	
999										1	

<u> Table 6.2 - Helicopter MMR Availability 1984</u>

Number of observations acquired for each site and date. Each row is for a given site and each column is a separate date given by month and day.

quisitio	n Dates	1984			00 14 6	00/11/	00 (00
<u>05/18</u>	<u>05/28</u>	<u>06/03</u>	<u>08/02</u>	<u>08/03</u>	<u>08/16</u>	09/16	09/23
1	1	1		3	2	4	1
1	1	1	1	3	2	3	-
				_	-	1	1
1	1	1	2	3	2	2	1
1		1		3	2	3	1
1	1	1	1	3	2	3	-
1						1	1
1		1				1	1
1						1	
							1
		1					1
		1		_		•	1
1	1	1	2	2	1	2	1
						3	1
1	1	1				1	
1	1	1	1			1	
1	1	1	1			1	
		1					
	1				-		
1	1	1	1	3	2	3	
			1	3	2	3	
1	1	1		3	1	4	
1	1	1		3	1	3	4
21						3	1
9							1
1							1
2							1
4							1
5							1
	quisitio <u>05/18</u> 1 1 1 1 1 1 1 1 1 1 1 1 1	quisition Dates $05/18$ $05/28$ 1 1 2 1 2 1	quisition Dates 1984 $05/18$ $05/28$ $06/03$ 1 1 1 2 1 1 2 1 1	quisition Dates 1984 $05/18$ $05/28$ $06/03$ $08/02$ 1 1 1 1 2	quisition Dates 1984 $05/18$ $05/28$ $06/03$ $08/02$ $08/03$ 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 2 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 3 3 1 1 1 3 3 1 1 1 3 3 1 1 1 3 3 1 1 1 3 3	quisition Dates 1984 $05/18$ $05/28$ $06/03$ $08/02$ $08/03$ $08/16$ 1 1 1 1 3 2 1 1 1 1 3 2 1 1 1 1 3 2 1 1 1 1 3 2 1 1 1 2 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 3 2 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 1 3 1 3 1 2 1 1	quisition Dates 1984 $05/18$ $05/28$ $06/03$ $08/02$ $08/03$ $08/16$ $09/16$ 1111323111132311123221113231113231111323111111111111111111111111111111111132111132111323111323111323111333111333111333113333233333333343333

- 73
20
H
L
4
7
4
- 6-4
- ai
*
- 9
-9
.9
_ ey
T.
2
9
5
- 41
3
പ്
9
1
1
Ľ

Reflectance data collected from the helicopter-mounted MMR in 1983. Each table has data collected from a single day. Site is the average percent reflectance measured by the MMR. Std 1 through 7 are the standard deviations of the reflectance measurements. site location; Obs. is the number of observations averaged; Hgt. is the altitude of the helicopter in hundreds of feet; start and end times are in GMT in the form HHMMSS; Sol Zen and Sol Az are the solar zenith and azimuth angles; Rfl 1 through 7 are the Unless otherwise noted, all observations are nadir views. Reflectances of -1.00 are missing values.

May 15, 1983

	Std 7	0.31	0.14	0.11	0.07	0.10	0.07	0.01	0.45	0.43	0.10	0.57	054	0.18	01.0	0.41 0.41	0.45	0.01	0.01	0.15	0.42	0.07	0.17	0.03	20.0		U. 35	0.77	0.06	0.13
1 1 1	KH 7	3.91	3.02	3.16	2.96	2.81	2.69	0.03	13.30	10.99	13.38	13.03	3.57	15.63	10.00	01.01	10.67	0.01	0.01	3.01	5.79	6.32	5.62	0.04	10.01		10.91	9.50	4.44	2.37
	Std 6	2.5 2	/7.0	0.18	0.12	0.16	0.16	0.02	0.65	0.57	0.15	0.77	0.83	0.30		70.0	0.46	0.01	0.01	0.22	0.62	0.11	0.28	0.04	10.0		0.46	1.06	0.07	0.33
	Kri6	1.0	40.7	87. /	./</td <td>6.72</td> <td>6.52</td> <td>0.07</td> <td>22.17</td> <td>18.71</td> <td>22.62</td> <td>21.64</td> <td>8.88</td> <td>25.11</td> <td></td> <td>10.42</td> <td>18.46</td> <td>0.03</td> <td>0.03</td> <td>7.78</td> <td>11.50</td> <td>12.77</td> <td>12.04</td> <td>0.08</td> <td>20 57</td> <td></td> <td>cn.v1</td> <td>16.67</td> <td>9.75</td> <td>5.86</td>	6.72	6.52	0.07	22.17	18.71	22.62	21.64	8.88	25.11		10.42	18.46	0.03	0.03	7.78	11.50	12.77	12.04	0.08	20 57		cn.v1	16.67	9.75	5.86
נ י	Sta C	6 1 .0	70.0	0.24 0.74	0.14	0.16	0.30	0.02	0.68	0.33	0.34	0.52	0.77	0.36	0.04		90.0 200	0.02	0.03	0.48	0.82	0.16	0.34	0.04	0 61		07.0	1.04	0.10	0.61
	18 27	10.01	00.01	1 0.01	14.09	13.29	12.96	0.16	24.45	21.21	25.38	24.00	19.20	25.08	75 87		40.77	0.10	0.11	15.83	19.39	20.81	19.94	0.20	21.07	21 12	CF-17	19.49	15.58	11.28
1 110	<u>510 4</u>	70.1	07-0	1.0		71.0	00	0.03	0.67	0.23	0.23	0.29	0.48	0.23	0 33		07.0	10.0	0.03	0.71	0.57	0.21	0.22	0.06	0.30	0000	C7.0	0.93	0.14	0.68
י שמ	17 21	17.71	11 27	11 00	40.11	11.14	10.98	0.30	15.86	14.33	16.86	15.30	19.37	14.24	14 76	14 54		0.20	0.23	14.74	14.74	16.72	15.08	0.29	12.39	14 28		NC.21	12.48	10.48
547.2	015	0.05	20.0	20.0		0.00	0.0	70.0	0.26	0.17	0.09	0.18	0.23	0.30	0.18	0.20		10.0	0.03	0.08	0.36	0.08	0.12	0.05	0.20	0 14		CC.7	0.04	0.08
2 6 Q	2.65	1 87	1 04	1 07	1 00	8.5	1./7	0.48	6.40 -	5.17	6.64	6.43	2.51	8.02	6.97	14		<u>7</u> .0	0.47	2.01	4.58	5.20	4.18	0.49	6.34	5.61	1010	10.7 7	2.3/	1.44
6 P43	0.08	0.07	0.08	0.04	100	0.00	200	50.0 0	77.0	60.0	0.0	0.13	0.18	0.24	0.17	0.18		10.0	0.03	0.11	0.22	0.94	0.09	0.05	0.13	0.10		67.0	0.04	0.11
Rfl7	3.07	2.57	2.63	2,66	2 C	246	04.1	10.U	0.0	4.82	5.90	5.58	3.15	6.25	5.66	4.67	10.1	70.0	0.76	2.47	4.14	4.60	4.05	0.67	5.03	5.08	118		7/7	I.Y.I
Std1	0.0	0.00	000	000			0.00	8.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00		3.6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		8.0	0.0	0.00
RA 1	0.0	0.00	00.00	0.00		0.00		3.0	8.0	0.0	0.00	0.00	0.00	0.00	0.00	00.00		8.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		8.0	3.0	0.00
Sol Az	220.50	222.50	223.31	225.00	225.00	226.00	227.00	00.027	00,000	00.002	00.162	231.44	233.25	235.00	237.00	238.00	239 00	201.00	10.002	c/.1c7	253.00	203.33	254.00	254.33	255.00	255.00	256.00	257.00		00.757
Sol Zen	35.00	35.50	36.00	36.00	36.00	37.00	37.00	38.00	20.00		00.40	00.65	40.00	40.00	41.00	42.00	42,00		49.00	00.00	00.16	00.16	00.13	52.00	52.00	52.00	53.00	24.00		04.00
End Time	193740	194408	194610	195002	195159	195325	195545	200058	200546		00007	401014	200002	202202	202825	203152	203450	211047	/#/117	2120210	212000	100012	213503	213/0/	214013	214139	214532	214929	215051	100017
St Time	193624	194212	194528	194918	195122	195238	195511	200013	200511	200800	200000	201517	/10102	202129	202747	203115	203416	211923	2112EC	212005	CN0017	252012	2010012	213642	213949	214115	214505	214902	215026	070014
Hgt.	1	1	1	7	ო	4	1	· σ	. –	• ~	1 -	ť -		- ,		1	1	-				- F	→ ,	- ,	-		-	.	•	•
Obs.	16	16	16	16	16	16	16	16	16	24	2 7	27	9;	<u></u>	16	16	16	12	; 5	15	1 5	15	4 5	7 ;	2	12	10	12	15	!
Site	1	7	14	15	15	15	33	e	16		<u>а</u>	· ∠	* 、	0 ;	1	S	24	26	1 5	3 5	1 0	2 0	7 L	38	33	21	8	10	00)

844 7 0.20 0.23 0.54 0.16 0.16 0.06 0.20	Std 7 Std 7 0.10 0.11 0.11 0.24 0.26 0.26 0.17 0.051 0.17 0.01 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.151 0.17 0.151 0.17 0.151 0.17 0.17 0.16 0.17 0.17 0.17 0.16 0.17 0.17 0.17	Std 7 0.06 0.11
8.11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Rfl 7 3.3.90 3.3.91 3.3.55 3.3.55 5.2.88 6.01 5.99 3.04 3.04	<u>Rfl 7</u> 3.81 3.65
Number Numer Numer Numer <td>0.18 0.18 0.18 0.45 0.45 0.45 0.030 0.140 0.031 0.032 0.110 0.120 0.121 0.122 0.123 0.101 0.238 0.238 0.238 0.240 0.251 0.252 0.233 0.234 0.235 0.236 0.237</td> <td><u>Std 6</u> 0.18 0.33</td>	0.18 0.18 0.18 0.45 0.45 0.45 0.030 0.140 0.031 0.032 0.110 0.120 0.121 0.122 0.123 0.101 0.238 0.238 0.238 0.240 0.251 0.252 0.233 0.234 0.235 0.236 0.237	<u>Std 6</u> 0.18 0.33
Rf16 2 7.55 7.55 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.53 7.52 7.54 19 7.55 7.52 7.55 7.52 7.55 7.52 7.55 7.52 7.55 7.52 7.55 7.52 7.55 7.52 7.55 7.52 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55	Rflb 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.25 0.25 0.25 0.25 0.11 0.25 11.46 15.45 16.01 13.19 0.01 12.54 7.61 7.71	<u>Rf16</u> 14.34 12.11
idd 5 2 0.75 7 7 0.75 2 2 0.75 2 2 0.18 1 2 0.18 1 1 0.16 1 1	Std 5 1 0.32 1 0.28 0.28 0.70 0.03 0.16 0.06 1.157 1 1.157 1 1.157 1 1.157 0.03 0.16 0.03 0.16 0.03 0.258 0.03 0.258 0.03 0.258 0.03 0.258 0.03 0.258 0.03 0.36 0.36 0.36 0.36	<u>Std 5</u> 0.31 0.66
Rf1 5 [4,14] [4,14] [4,00] [4,	Rdisplay="2">Right 5 220.79 220.79 115.81 115.81 115.81 115.81 115.82 115.81 115.81 115.82 115.81 115.82 115.82 115.82 115.82 115.77 115.82 115.82 113.99 113.99 113.99 114.75 114.75	<u>RA 5</u> 33.61 25.67
std 4 1.53 1.53 1.53 1.03 0.14 0.14 0.14 0.14 0.03 0.14 0.03 0.14 0.03 0.14 0.03 0.14 0.03 0.04 <th0.04< th=""> 0.04 0.04 <th< td=""><td>Std 4 0.22 0.22 0.09 0.09 0.28 0.28 0.22 0.22 0.22 0.22 0.22 0.22</td><td>Std 4 0.38 0.77</td></th<></th0.04<>	Std 4 0.22 0.22 0.09 0.09 0.28 0.28 0.22 0.22 0.22 0.22 0.22 0.22	Std 4 0.38 0.77
Rfl 4 5 2.42 2.42 2 2.22 3.74 6 0.023 0.023 6 17.01 6 6 16.51 6 6	Rfl 4 13.34 13.34 13.34 13.34 13.34 13.35 20.38 213.34 13.35 22.55 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 24.68 0.15 117.35 117.35 117.3	<u>Rfi 4</u> 35.12 25.94
kid 3 kid 3 <th< td=""><td>Std 3 0.09 0.18 0.18 0.12 0.02 0.03 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02</td><td><mark>Std 3</mark> 0.03 0.04</td></th<>	Std 3 0.09 0.18 0.18 0.12 0.02 0.03 0.02 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02	<mark>Std 3</mark> 0.03 0.04
Rfl 3 Stress 2.17 0 2.15 0 2.15 0 7.13 0 7.13 0 0.43 0.43 5.38 0 4.92 0	Rfl 3 2.71 2.71 2.249 2.252 2.293 2.294 2.295 2.295 <td><u>Rfl 3</u> 1.40 1.41</td>	<u>Rfl 3</u> 1.40 1.41
2117 117 117 117 117 117 117 117 117 117	Std 2 0.06 0.12 0.12 0.12 0.12 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.0	<mark>Std 2</mark> 0.05 0.06
Rf12 5552 (121) 2.555 (121) 2.	Rf12 3.58 3.58 3.28 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.32 3.33 3.33 3.35 3.36 3.37 3.36 3.37 3.36 3.37 3.37 3.37 3.37 3.37 3.37 3.37	<u>Rf12</u> 2.29 2.18
Std1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Std1 0.07 0.05 0.05 0.15 0.06 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.110 0.110 0.110 0.110	<u>Std1</u> 0.02 0.05
RAI 1 2.00 0.000 0.00 0.00 0.00 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	Rfl 1 2.38 2.17 2.16 2.16 2.16 2.16 2.17 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.11 2.16 2.16 2.16 2.16 2.17 2.16 2.17 2.16 2.17 2.16 2.17 2.16 2.17	<u>RA 1</u> 2.00 1.79
<u>801 Az</u> 224.00 225.44 233.00 233.00 240.19 241.00 241.00	Sol Az 211.00 218.81 220.00 227.00 228.50 234.00 244.00 264.00 265.00 265.00 265.00 265.00 265.00 266.00 266.00	<u>Sol Az</u> 101.00 103.00
<u>ol Zen</u> 36.00 36.00 41.00 42.19 43.00	Sol Zen 28.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 31.00 <	<u>Sol Zen</u> 50.00 49.00
nd Time 5 194748 195356 202259 202747 203735 203735 203904 204122	Stud Time 190951 190951 190951 190951 192648 192850 194850 195221 200305 200305 201138 201138 201138 201138 201138 201138 201138 201559 201559 201558 201559 201559 201559 201559 201559 201559 201559 201559 201559 201559 201559 201559 201559 201514 221501 22143 221111 2211739 2211739 2217331	End Time 143721 144507
k Time E 94707 1 94932 1 02501 1 02501 1 002501 1 003823 1 002501 1 002503 1 002803 1 002803 1 002803 1 002803 1 002803 1 002803 1 003803 1 00080 1 000800 1 000800 1 000800 1 000800 1 000800 1 000800 1 000800 1 0008000 1 000800 1 00080000000000	St Time I 192555 192555 192555 192555 1925142 195142 195142 2000512 200056 201056 201554 201154 201554 201556 201554 201566 2015402 203154 2015402 203154 2015402 20407 2020407 2220322 222032 2220322 2221312 222132 222132 222132 222146 222146	<u>St Time</u> 143647 144432
	El 2019年まままままままままますまままままままままままままままままままままままままま	<u>Hgt.</u> 4
²⁸³ 16 32 32 33 33 33 35 55 55 55 55 55 55 55 55 55	33 16 16 16 16 16 16 16 16 16 16	1983 16 16
May 16, 15 Site 5 14 14 14 22 22 23 25 19 19 19	June 9, 196 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	July 12, ⁵ Site 73 77

Std 7 0.08 0.12 0.12 0.14 0.14 0.11 0.11 0.11 0.11 0.11 0.10	3td 7).10).24	0.00	.12).12 21.(11.).04 20	0.00	20.0	<u>00،</u>	1.27	.18	.53	1.15	.19	.19	ŝ
Rfl Z 22.06 22.06 33.69 22.36 33.54 23.69 55.35 55.29 55.35 55.36	RA 7 5	4.14 (5.76 (8.8.1	ក្តីភូន	72.2		3.52	8.8.8	10 IC.1	111 0	16.9 7	34 0	1.70 0	0.24 0	06.0	10.1	 36 0
Std 6 0.13 0.25 0.16 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0.20	2.23	0.50 0.24 0.24	នុត្តទ	0.28	0.10	0.13	.43	23. 23. 24. 24. 24. 24. 27. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	.34 4	.42 24 0		.35 4	.36 3	.26		10. 10:
Rf16 5.87 6.26 6.24 6.54 6.54 6.54 6.54 7.15 7.14 7.714 7.714 7.7.14	<u>Rf16</u>	3.53 3.13 ().44 (1.75 (96.1 96.1	8.5.6	9.16	2.66 1.44 (.75	5.05	F.17 (8.04 7 0	118 C	.42	3.36 0	.28	3.46 0.7 0.7	57 5
13 3 4 9 3 9 6 9 9 5 8 4 1 2 <u>7 4 5</u> 13 3 4 9 3 9 6 6 9 5 8 4 1 2 <u>7</u> 4 5 1 3 3 4 7 3 4 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1	<u>td 5</u>	2 2 3 2 7 1	0.6.8 0.11	333		5, 5 2, 2	2 28	883	5. 15 17 15	70	41 12 72 12	- 1 - 09	92 11	67	8	37 2 2	; 51 ; 51
RH 5 S	<u>81 5 S</u> 1.92 0	0 0 8 8 0 8 9 0 0 8 9 0	3.56 0 3.56 0 3.7 0		2.30	8.15 0 8.15 0	9.50 0 6.15 0	0.00	3.54 0	1.82 0	6.34 0 0.44 0	0.68 0	0.64 1	7.07 0	4.65	8.31 () 5 04 ()	8.81 0
Std 4 I 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.37 1 0.34 1 0.35 2 0.50 2 0.55 3 0.55 3 0.55 3	itd 4 H	. 4 5 45 33 32	37 2	1 2 8 1 2 8 1 2 1 2 1	9.4.9			5.2	8, 6, 8, 6, 8, 6,	.95	53 54 9	: 8 9 : 60	.64 2	42 1	85	ي: ۳. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲.	3.09 2.09
Rf1 4 [11.67] [2.72] [2.72] [2.72] [2.74] [2	Rfi 4 5	1.32 0		8.31 0	3.12	0 99.9	0 8.8 8.8 0 8.8	0.10	7.48 0	(5.15 0	4.28 0	3.13 0	8.48 1	6.31 0	4.04 0	8.76 V 45 0	8.65 0
Std 3 0.05 0.04 0.01 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Std 3]	0.04	0.06	0.07	60.0	0.08	0.02 3 0.12 2	0.00	0.05 3	0.07	0.13 3	0.08 3	0.13 1	0.06 1	0.08	1.10 1.00 1.00	0.15 3
RA 3 1.46 1.65 0.57 0.57 0.35 0.35 0.35 0.35 1.78 1.78 1.94	RA 3 1.57	2.15	0.39 3.68 4 29	3.80	1.56	1.4/ 2.41	1.59 1.51	0.30	5.00	1.65	2.4U 2.06	1.86	2.42	2.46	2.13	2.07	238
5td 2 0.07 0.06 0.06 0.08 0.03 0.03 0.03	Std 2 0.09	/0.0 0.02	0.02 0.08	0.07	0.11	0.12	0.04 0.14	0.01	0.07	0.10	0.06 0.06	0.10	0.14	0.08	0.09	0.12 0.12	0.24
Rf12 2.31 2.53 2.59 0.58 0.58 0.54 0.54 0.54 3.16 0.54 3.45	<u>Rf12</u> 2.64	2./6 3.38 0.55	4.62 4.80	4.38	2.54 2.54 2.54	3.54	2.51 2.37	0.55 2 04	3.25	2.84	3.72 3.72	2.97	3.57	3.77	3.23	4.10 3.69	3.92
Std1 0.05 0.07 0.04 0.03 0.03 0.03 0.03	<u>Std1</u> 0.05	0.04	0.04 0.04 0.06	0.04	0.07	0.07	0.02 0.11	0.01	0.03	0.08	0.03	0.06	0.09 2 2 2	0.05	0.07	0.06 0.06	60'0
Rf1 1 1.55 1.71 0.52 1.87 0.55 2.29 2.29 2.48	Rfl 1 1.73	2.65 2.65 0.55	2.84 3.05	2.78 2.18	1.71	2.23	2.08 1.89	0.45 2.44	2.45	2.12	2.62	2.20	2.36	2.39	2.06 2.06	2.67	2.71
Sol Az 104.00 105.00 107.00 108.00 110.00 111.00 113.00	<u>Sol Az</u> 92.00	93.00 93.00	94 .50	95.00 96.00	97.00 08.00	98.00 0.86	100.00	101.50 111.00	111.00	112.00	114.00	115.00	116.00	116.56	118.00	147.00	149.31
<u>Sol Zen</u> 48.00 47.00 47.00 45.00 45.00 42.00 42.00 42.00 42.00	<u>Sol Zen</u> 58.00	57.00	26.00 56.00	55.00 54.00	54.00	53.00	51.00	50.00 44 00	43.00	43.00	42.00	41.00	41.00	40.04 00.05	40.00 20 00	29.00	29.00
End Time 145146 145146 145902 150118 150552 151044 151615 152050 152235 152235	End Time 134847	135349 135637	140056 140316	140557 141223	141734 141917	142241	143349	143717 151811	151938	152231 152855	153136	153305	153721	120401	155126	170731	171314
d) <u>St Time</u> 145111 145111 145358 145358 145358 150519 15002 151537 152710 152710 152710	<u>St Time</u> 134812 135116	135301 135547	135959 140242	140512 141146	141656 141843	142200	142340	143643 151736	151905	152149	153101	153232	153635	153944	155050	170656	171234
Hatinue 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hgt. 4	* * 4	' ব' ব'	ৰ ৰ	4 4	• • •	* *	ক ক	4	ক ব	• 7•	4	4	4 •	ক ব	4	4
883 (co 0055. 16 16 16 16 16 16 16 16 16 16	983 16 16	19 19	2 S 2	16 16	16 16	19	10 16	16 16	16	16 16	16	16	16	01 1	o1 72	16	16
uly 12, 11 2 2 14 15 14 15 15 16 23 23 23 23 23 23 23 23 24 70 70 70 71 72 72 72 73 73 73 73 73 73 73 73 73 73	July 13, 15 <u>Site</u> 68 21	ដេង	12 81	19 45	42 41	21	\$ 8	28 81	82	28	3 2 5	83	8	ς Γ	4	: 8	89

t c	<u>5td /</u> 0.22	0.55	0.14	0.11	0.18	0.18	0.06	0.89	0.41	0.11	0.18	0.23	0.23	0.39	0.15	0.27	0.09	0.10	1.43	0.13	0.06	0.19	1.07	0.08	0.62		Std 7	0.12	0.07	0.09	0.14	0.11	0.07	0.25	0.51	0.05 0.05	60.0	0.09
	<u>Ktl /</u> 5.35	4.68	5.57	2.85	4.91	3.19	3.04	2.37	3.25	2.97	3.56	8.67	7.45	8.90	5.02	5.08	4.42	4.47	4.33	4.31	3.89	3.87	3.48	4.96	0.83		Rfi 7	1.72	3.54	3.46	1.67	1.85	2.05	-0.94	3.27	3.36	5.01	4.26
· ·	<u>Std 6</u> 0.37	0.95	0.33	0.20	0.27	0.38	0.13	0.45	0.92	0.26	1.03	0.40	0.47	0.66	0.25	0.53	0.18	0.21	0.29	0.23	0.23	0.36	0.49	0.15	1.23		Std 6	0.35	0.22	0.26	0.34	0.22	0.15	0.25	0.44	0.19	0.27	0.29
	<u>Kt16</u> 13.19	10.99	16.98	8.01	10.52	8.23	7.88	7.29	9.02	7.77	9.88	18.58	16.46	19.48	15.51	16.33	14.25	13.89	14.00	13.79	13.41	12.83	12.30	15.71	1.33		Rf16	4.97	13.57	11.68	5.00	5.35	5.86	-0.94	12.01	12.31	16.80	15.10
	<u>Std 5</u> 0.54	1.23	0.64	0.32	0.31	0.63	0.25	3.99	1.37	0.42	0.67	0.57	0.55	0.69	0.53	0.60	0.42	0.46	0.54	0.32	0.48	0.56	0.70	16.0	0.76		Std 5	0.72	0.55	0.48	0.64	0.34	0.22	0.25	1.90	0.46 2	0.61	0.62
	<u>KH 5</u> 24.33	20.06	32.99	16.50	17.40	15.95	15.44	14.10	18.44	14.98	18.62	30.61	26.92	31.20	30.60	33.29	29.19	27.32	27.06	27.18	28.41	26.51	25.22	30.47	1.14		Rfi 5	11.36	32.51	24.75	11.24	11.99	12.86	-0.04	27.10	28.91	35.05	33.95
	<u>Std 4</u> 0.64	0.92	0.81	0.57	0.41	0.67	0.54	0.88	0.95	0.31	0.61	0.38	0.39	0.39	0.77	0.56	0.89	0.61	0.50	0.42	0.59	0.64	0.75	0.57	0.72		Std 4	0.66	0.72	0.50	0.73	0.36	0.24	0.02	1.53	0.38	0.87	0.94
	<u>Kfl 4</u> 22.87	18.38	33.52	17.00	15.43	16.11	15.50	15.24	18.21	14.03	17.50	26.84	22.37	25.33	31.11	34.74	30.94	28.55	27.96	28.55	31.45	29.35	27.93	32.46	1.34		Rfi 4	11.02	35.63	25.30	10.81	11.65	12.30	0.34	29.12	32.07	35.96	36.72
•	Std 3 0.17	0.29	0.08	0.09	0.11	0.11	0.09	0.17	1.07	0.74	0.05	0.15	0.74	0.29	0.09	0.49	0.10	0.09	0.75	0.05	0.06	0.07	0.12	0.07	0.75		Std 3	0.09	0.03	0.05	0.11	0.09	0.04	0.02	0.06	0.03	0.03	0.04
	<u>Rfl 3</u> 3.21	3.05	1.98	2.34	2.77	2.34	2.18	2.16	1.77	1.85	2.27	6.33	4.90	5.67	1.97	1.94	1.82	1.78	1.79	1.71	1.64	1.54	1.69	1.76	1.74		RA 3	1.28	1.62	1.59	1.31	1.47	1.57	0.87	1.49	1.43	1.96	1.90
•	<u>Std 2</u> 0.23	0.34	0.12	0.13	0.11	0.14	0.13	1.06	0.24	0.97	0.08	0.13	0.15	0.20	1.01	0.13	0.11	0.09	0.11	0.09	0.06	0.07	0.16	0.06	0.76		Std 2	0.13	0.05	0.09	0.17	0.11	0.06	0.02	0.10	0.03	0.05	0.06
	<u>Rf12</u> 4.76	4.39	3.37	3.71	3.84	3.52	3.28	3.04	3.37	2.74	3.43	6.76	5.71	6.19	2.88	3.33	2.87	2.70	2.94	2.67	2.57	2.41	2.72	2.85	1.79		Rf12	2.01	2.51	2.38	2.01	2.22	2.35	16.0	2.16	2.17	3.12	3.12
	Std1 0.14	0.22	0.08	0.09	0.83	0.10	0.08	0.16	0.79	0.06	0.77	0.10	0.10	1.24	0.06	0.09	0.07	0.06	0.07	0.75	0.06	0.05	0.10	0.79	0.70		Std1	0.07	0.04	0.06	0.11	0.07	0.05	0.02	0.08	0.03	0.05	0.05
1	<u>Rfi 1</u> 2.94	2.84	2.36	2.37	2.19	2.32	2.16	2.23	2.01	2.06	1.97	4.18	3.60	3.77	2.21	2.45	2.15	2.10	2.22	1.90	2.09	1.93	2.05	1.94	1.62		RA 1	1.38	2.18	1.90	1.43	1.57	1.63	0.72	1.90	1.91	2.34	2.37
	<u>Sol Az</u> 153.00	154.75	159.00	197.56	199.00	200.00	201.00	202.00	203.25	205.00	207.00	209.00	210.00	211.50	214.75	217.00	222.00	224.00	225.00	227.00	228.00	229.00	230.00	231.00	233.69		Sol Az	100.00	104.00	108.00	109.70	112.00	112.50	113.00	114.83	114.25	117.00	118.00
1	<u>Sol Zen</u> 28.00	28.00	27.00	27.00	27.00	27.00	27.00	28.00	28.00	28.00	28.00	29.00	29.00	29.00	30.00	30.00	32.00	32.00	33.00	33.00	34.00	34.00	34.00	35.00	36.00		Sol Zen	61.00	57.94	55.00	53.65	52.00	51.50	51.00	50.04	50.56	49.00	48.00
I	<u>End Time</u> 177106	172427	173442	184821	185110	185326	185439	185835	190108	190447	190755	191203	191439	191817	192527	193057	194353	194808	195210	195545	195953	200257	200652	200936	201623		End Time	140334	142201	143838	145210	145811	150020	150210	151007	151201	151812	152101
g)	<u>St Time</u> 172033	172354	173408	184746	185036	185249	185406	185800	190035	190411	190721	191129	191402	191742	192450	193023	194312	194734	195133	195511	195916	200202	200535	200855	201549		St Time	140241	142126	143801	144611	145735	145942	150135	150757	151127	151732	152020
ontinue	Hgt.	• =	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	~	Het.	4	4	4	4	4	4	4	4	4	4	4
<u>983 (cc</u>	16 16	16	16	16	16	15	16	16	16	16	16	16	16	16	16	16	15	15	15	16	16	20	19	15	16	2. 1983	, Opsilo	16	16	15	23	16	16	16	24	16	16	16
July 13, 1	Site 60	22	91	50	47	49	48	55	54	43	56	62	63	64	20	87	6	78	92	93	75	74	72	76	73	August 1	Site	26	73	78	7	14	15	23	ŝ	16	69	71

	Std	0.11	0.22	0.00	0.10	0.20	0.21	0.07	0.20	0.08	0.13	0.41	0.39	0.22	0.10	0.08	0.07	0.15	0.21	0.14	0.07	0.15	0.08	0.09	0.09	0.27	0.12	0.15	0.15	0.24	0.15	0.24	0.19	0.53	0.14	0.49	0.23	0.03	0.13	0.56
	RA 7	2.18	5.03	8. -	2.97	6.00	6.43	6.46	2.55	2.30	4.20	4.82	4.87	6.02	2.85	2.64	4.36	4.71	4.14	4.31	0.27	4.73	2.43	2.85	2.51	2.97	2.35	2.43	2.55	3.81	4.07	7.10	8.82	8.27	5.51	6.67	5.28	2.28	2.91	3.45
	Std 6	87 O	0.31		0.16	0.0	0.40	0.18	0.46	0.21	0.27	0.74	0.67	0.38	0.25	0.16	0.25	0.59	0.48	0.48	60.0	0.25	0.17	0.20	0.23	0.68	0:30	0.34	0.32	0.57	0.31	0.45	0.32	0.90	0.38	1.01	0.57	0.13	0.35	1.17
	<u>Rf16</u>	17.0	20.01	, F		14./3	14.6U	[4.8] 2 2 2	7.09	6.49	0.69	5.01	5.26	9.75	8.20	7.77	4.63	4.39	3.77	4.22	0.35	9.71	6.99	7.54	6.92	8.41	7.27	7.01	6.75	9.96	1.44	5.95	9.03	8.31	3.19	5.55	5.90	6.37	8.86	6.6
	Std 5			32			0.00	3.0	0.73	0.39	0.50	0.91	0.75 1	0.50	0.50	0.27	0.66 1	1.54 1	0.78 1	0.99	60.0	0.33	0.35	0.47	0.54	1.10	0.48	0.53	0.55	1.01	0.65 1	0.65 1	0.33 1	1.02 1	0.74 1	1.54 1	1.97	.38	.87	.41
	RA 5	10./0	22.03		10.00	06.02	10.02	20.13	15.29	14.11	21.03	30.94	31.73	41.33	17.67	17.27	31.72	29.63	29.24	30.39	0.40	15.93	15.20	15.48	14.43	17.66	l6.93	14.96	3.54	9.66	13.38	17.25	1.91	0.48	4.68 (8.59	1.53 (3.48 (0.02	1.12
	Std 4	0.40	8.6	10.0	10.0			0.0	9.69	4.9	9.48 1.48	1.17	68.	0.29	.36		0.75	68.		1.24	8.	0.28	.48	.54	.67	<u>.</u>	.50	.46	ស <u>្</u> ល ស	5.8		.66	.34 3	.39	.72	.12	60. E	52	50	.03 .03
	Rfl 4		01.20	212	21.51	10.72			14.91	96.5	9.02	9.24	N.41	18 .70	6.73	6.63 (1.91	8.69	0.16 (1.10	0.54 (3.10 (4.85 (4.69 (3.88	6.50 C	7.67 0	4.06	2.08	2.5	1.95	2.28 0	6.29 0	3.77 0	1.88 0	5.28 1	0.26 1	3.37 0	0.91 1	1.55 1
•	Etd 3			105		14			61.0 6	60.0	10.0		60.0	80.0	0.03	60.0	0.03	10 2	0.07	0.03	0.10	0.08	1.07	1.08	.08	.15 1	.07	.12	01:10		2 0 2 10	.19	.13	.30 .5	07	. <u>3</u> 1 2	.20 3	6. : 6	05	24 2
	KH 3	212	12	180	102	181	10.1		C	83	40.7	5	8	.19		4	20		8	8	68.		.93	.05	8. 8.	.92 52	.58 .0	54. 100		£ €	, 1 1	0 0 8/.	.16	.14		.42	.11 11	8; ; 0; ;	.63 20	.97 U
		1010	100	501	8.0	14	100			01.0	01.0	22	Ŋ,		5		9	01.	.10	107	60.	89.2	60;	.13	.13 	19	.12	. 14 1. 14	ני 1 ה		3:	91. 9	60. 90.	5. 20 2		28	19 2	12;	10	28 1
	<u>270</u>	2120	12.0	96.0	803	23	187	50		20			5 1		01.0	48		2 2		0 0 29 0 29 0	0 0 0 0	.19 20	88. 1 88. 1	.95 	0 0 77	28. f	.4. 0.0	ہ د م	4. c					5/ 5/ 0	47 0 0 0	28	5 0 8 1	0 ¢		n 78
111		200	02	04	201	01.0	03				200		9 8	98	3.6	9.6	40. 41.00	9.2	9. 8. 9. 8.	9.8	5. 25.	90. 90.	2 0. 2 0	80.98 80.98	5 S	.13	80;	7 6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	- u - u	2 9 2 9	0 2	6 i	51.5 5	9 F		5 C	28 88	si c g ;	10 7
1 40	- %	44	.62	.94 0	.15	.32	16 0	10	20 20 20		e e	5.	15					, 5 1 8	0 0	0 01. 01.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 60 60 60 60 60 60 60 60 60 60 60 60 60	9 9 0 0	0 200	88	50	4 6 0 0 0		7 ° 2 C	14			5 6 5 6	7 0 7 0	200	0 7 8	ភ ទ ភូខ	ے د ت	2 2 2 2	y, U.
1 - V	<u> </u>	8	8	00.	е 8	е 80.	00	8	; S	35	35	3 S	35	35	36	4 c 4 c	8 4 6 7 7	9 8 9 8	B r N r	85	- ` - {	2 7 2 8	38	38	38	33	28	35	ະ ເ ໘	95 88	9 5 8 5	5 S	3 S	3 5	4 c 3 2	יי 12	7 - 2 :	א <u>ר</u> א די		
5		120	121	122	124	125	125	127	128	130	147	147	149	9 1 1	151	154	- Cu		159.	.401	201 201	103.	100. 100.	10/1	10/1	170.1	171	171.	174	177 (178.	170 1	10.01	1.201	201		204.1	-007	2002	1.7.4
Sol 70.	47.00	47.00	47.00	46.00	45.00	45.00	44.00	43.00	43.00	42.00	37 M	8.6	8. % W	8.8 8.8	20.00 77.72	5.55	8.8	3.5	3.5		8.5	04.00	9.5 8.5	00.00 00.00	3.00	33.00	22.00	23.00	33.00	33.00	33.00	8.6	22.00	33.00	3.55	3.5	20.00 20.00	27.00 27.00	8. % 8. %	20.00
d Time	52824	3053	3347	3852	4454	4655	4950	5612	5748	0434	5537	5654	5858	0433 0433			2010 2208	7511	2722	2001	1027	0700	0004			500 1		2036	0238	1170	253	1223	CF21	1954	117	1021	1040	1001	353	~~~~
ne Fn	30	6 15	3 15	6 15	5 15	5 15	3 15	4 15	9 15	5 16	191	101	16		 		10		10									12		18	180						ζ <u>Ε</u>	15	25	
St Ti	15273	15301	15325	15381	15441	15461	15491	15552	15570	16034	16544	16561	16581	17054	17075	17162	17713	17743	.P9C21	17282	17355	17302/1	174210		175016	175146	175350	175851	180157	180634	180912	181150	181704	181917	190333	190830	101526	191820	192150	~~~
Hat	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	• 4	• •	• •	• •	* 7	* •	* 4	• •	• •	• 4	• 4	• •••	4	4	4	4	• 4	• 4	• •	r 7	r 7	• 4	•
50 0	20	16	20	15	16	16	16	2	16	20	50	12	16	16	28	8	16	16	2 8	14	2 12	2 4	2 2	3 5	: 2	12	12	16	16	16	16	16	16	16	19	2 2	3 12	12	28	}
Site	88	21	55	26	12	18	19	41	42	51	28	8	28	45	46	62	8	8	26	28	47	2	64	4 8	5 4	23	3 55	43	56	13	63	62	64	104	103	2	١Ē	99	65	;

August 12, 1983 (continued)

Std 7 0.27	0.53	0.16	0.13	0.11	0.18	0.18	0.14	0.07	0.11	0.09	0.31	0.14	0.20	0.28	0.33	0.22	0.12	0.05	0.15	0.19	0.16	0.05	0.24		Std 7	0.15	0.08	0.12	0.00	0.18	0.08	0.04	0.14	0.08	0.29	0.10
Rfi 7 2.59	3.70	4.09	4.02	4.99	4.35	4.34	4.26	4.51	3.98	2.25	5.16	4.84	2.64	3.86	3.18	1.99	1.65	1.01	5.40	3.92	5.60	4.91	2.12		<u>RA 7</u>	1.94	3.88	4.59	0.00	5.15	1.99	1.67	2.49	74.7	2.73	2.11
<u>Std 6</u> 0.66	0.12	0.33	0.54	0.27	0.48	0.34	0.36	0.23	0.26	0.21	0.47	0.31	0.37	0.56	0.63	0.42	0.27	0.20	0.29	0.62	0.40	0.13	0.48		Std 6	0.33	0.14	0.31	0.00	0.44	0.18	0.08	0.34	1.44	0.59	0.18
<u>Rfl6</u> 7.91	13.03	13.16	13.61	15.84	13.15	12.53	12.64	14.39	13.38	7.45	11.41	10.43	6.77	9.43	9.06	5.59	5,93	3.67	16.74	12.90	17.43	15.79	5.94		<u>Rf16</u>	5.24	9.77	11.82	0.00	16.20	5.84	5.78	7.78	95.7	6.9 <u>9</u>	6.10
<u>Std 5</u> 1.21	0.17	0.55	1.14	0.42	0.77	0.49	1.00	0.58	0.72	0.40	0.53	0.55	0.57	0.81	0.59	0.73	0.55	0.63	0.68	1.41	0.67	0.40	0.74		Std 5	0.56	0.24	0.56	0.00	0.71	0.33	0.16	0.63	0.37	0.94	0.29
<u>RA 5</u> 18.19	20.62	26.81	28.97	30.98	24.40	23.70	23.77	28.93	28.75	18.50	19.21	17.61	13.23	17.51	18.73	12.28	15.45	9.52	33.44	28.05	34.73	32.41	12.46		<u>RA 5</u>	11.56	19.58	23.75	0.03	33.59	13.27	15.30	18.87	19.87	14.48	13.59
Std 4 1.83	0.17	0.67	1.29	0.54	0.74	0.45	1.31	0.67	1.01	0.57	0.45	0.52	0.62	0.68	0.52	0.71	0.62	0.83	0.95	1.70	0.64	0.64	0.75		Std 4	0.58	0.30	0.36	0.02	0.71	0.35	0.18	0.73	0.44	0.85	0.30
<u>Rf1 4</u> 19.01	30.04 26.10	26.78	29.67	29.88	23.12	22.85	23.38	28.76	30.09	21.25	16.05	15.27	12.49	16.41	18.42	12.20	17.62	10.35	31.00	29.74	30.71	30.61	11.64		<u>Rfi 4</u>	11.72	19.11	23.30	0.16	33.86	13.71	18.00	20.99	22.32	13.87	13.61
<u>Std 3</u> 0.18	0.02	0.08	0.06	0.06	0.06	0.06	60.0	0.06	0.05	0.10	0.16	0.10	0.14	0.16	0.12	0.14	0.08	0.08	0.08	0.16	0.09	0.03	0.12		Std 3	0.11	0.05	0.09	0.00	0.07	0.06	0.04	0.06	0.04	0.17	0.06
Rfi 3 1.38	1.57	1.62	1.74	1.75	1.68	1.84	1.72	1.72	1.80	1.65	2.55	2.56	1.78	2.41	1.62	1.47	1.78	1.05	2.23	2.03	2.27	1.96	1.39		<u>Rfi 3</u>	1.45	2.65	3.42	0.44	2.13	1.69	1.25	1.50	1.59	1.84	1.64
<u>Std 2</u> 0.26	0.02	0.08	0.08	0.06	0.09	0.08	0.10	0.09	0.05	0.12	0.19	0.13	0.17	0.18	0.12	0.18	0.12	0.11	0.11	0.21	0.13	0.04	0.16		Std 2	0.15	0.08	0.06	0.00	0.08	0.08	0.06	0.10	0.06	0.21	0.08
<u>Rf12</u> 2.19	2.39	2.36	2.54	2.66	2.44	2.53	2.45	2.75	2.70	2.52	3.41	3.39	2.59	3.47	2.45	2.15	2.82	1.68	3.43	3.10	3.50	3.25	2.10		<u>Rf12</u>	2.22	3.53	4.31	0.63	3.14	2.59	2.00	2.40	2.57	2.71	2.44
Std1 0.17	0.02	8 8 8 9 8	0.06	0.05	0.06	0.05	60.0	0.06	0.05	0.08	0.15	0.09	0.13	0.13	0.06	0.13	0.08	0.09	0.06	0.14	0.07	0.02	0.12		Std1	0.09	0.04	0.05	0.02	0.05	0.06	0.03	0.07	0.04	0.13	0.04
<u>Rfi 1</u> 1.52	2.00	8.1	2.05	2.04	1.89	1.93	1.90	2.00	2.08	1.79	2.28	2.26	1.73	2.23	1.61	1.55	2.02	1.19	2.33	2.21	2.43	2.16	1.43		R fl 1	1.54	2.36	2.80	0.61	2.46	1.85	1.49	1.72	1.84	1.83	1.76
<u>Sol Az</u> 210.00	215.00	218.00	218.00	219.37	221.00	222.00	224.00	226.00	228.00	230.00	231.25	232.00	233.00	234.19	235.88	247.00	247.40	248.00	249.00	250.00	251.00	251.00	252.00		Sol Az	109.44	111.13	112.00	113.00	115.00	115.75	116.00	117.00	117.00	119.00	120.00
<u>36.00</u>	37.00	38.00 38.00	38.00	38.37	39.00	39.00	40.00	41.00	41.50	42.00	43.00	43.00	43.00	44.00	45.00	51.00	51.40	52.00	53.00	53.00	54.00	54.00	54.80		Sol Zen	54.00	53.00	52.88	52.00	51.00	50.00	50.00	50.00	49.00	48.69	48.00
nd Time	93919 04150	94534 94534	94756	95123	95640	95821	00553	01025	01724	02410	02808	02945	03243	03804	04234	12521	12823	13159	13548	213841	214152	214328	214800		ind Time	14414	145302	145603	145752	150708	151027	151321	151448	151710	152311	152654
03 Er	38	18	- 29 29	37 1	48 1	35 1	09 2	43 2	40	32 2	32 2	11 2	54 2	29 2	57 2	112 2	722 2	119 2	204	753	113	254 2	549		ime E	339	226	229	717	620	948	240	604	634	228	612
tinued) St Ti 1925	1938	1945	1946	1949	1955	1957	2005	2009	2016	2023	2027	2029	2031	2037	2041	2124	2127	2131	213	213	214	214	214		: St T	144	145	145	145	150	150	151	151	151	152	152
33 (con Hgt.	4.	4 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	ß	s. Hgi	4	4	4	4	4	4	4	4	4	5 4	4
12, 19 <u> 005</u> <u> 16</u> <u> 16</u>	; 16	01 21	2 2	19	16	16	16	16	16	16	16	16	16	16	16	20	20	16	16	20	16	16	22	t 14, 19	e Op	16	16	16	16	20	16	16	ï	16	1(1(
August <u>Sité</u> 67	<u>ሮ</u> 8	7 2	75	76	33	92	77	16	8	*1	59	58	57	60	61	100	101	45	92 26	86	94	8	22 22	Augus	Sit	56	104	103	25	22	102	65	67	99	56	41

	Std 7 0.06	0.24	0.08	0.17	0.27	00.0	0.13	0.19	0.25	0.29	0.12	0.12	0.64	0.13	0.25	0.13	0.13	0.18	0.14	0.12	0.01		617	0.08	0.25	0.21	0.23	0.06	0.04	0.15	0.25	0.14	0.09	0.12	0.18	0.19	0.31	0 20
	Rfl 7 1.71	5.56	4.05	3.70	4.14	0.00	2.00	3.02	5.95	6.10	5.87	2.49	5.09	5.76	5.12	4.05	4.45	3.38	3.25	3.42	0.01		2 U U	3.58	3.82	7.26	6.03	1.50	1.51	5.19	-0.04	3.64	3.88	4.15	2.42	2.33	3.13	3 45
	<u>Std 6</u> 0.13	0.56	0.19	0.34	0.64	0.01	0.32	0.40	0.52	0.52	0.13	0.26	0.56	0.33	0.62	0.39	0.20	0.33	0.26	0.22	0.01		7 273	0.24	0.73	0.52	0.66	0.14	0.11	0.29	0.04	0.31	0.17	0.17	0.70	0.34	0.57	1 46
	<u>Rfl6</u> 5.18	18.57	13.68	9.62	13.35	0.01	6.24	7.75	13.78	14.03	14.35	6.77	15.82	17.85	16.73	13.56	14.58	8.39	8.07	8.34	0.04		717 Q	10.46	11.65	13.86	15.47	4.73	4.71	14.09	0.09	9.22	9.63	10.27	7.17	6.85	7.93	0 41
	<u>Std 5</u> 0.24	0.88	0.62	0.56	1.00	0.00	0.57	0.78	0.70	0.67	0.33	0.50	1.03	0.55	0.95	0.71	0.32	0.55	0.39	0.28	0.02		5 P	0.29	1.23	0.83	1.37	0.28	0.24	0.48	0.03	0.48	0.26	0.12	1.32	0.48	0.76	07 0
	<u>RA 5</u> 12.03	39.59	29.99	19.48	28.96	0.02	14.80	15.67	25.04	25.66	28.24	14.34	31.70	35.41	35.59	29.54	30.94	16.68	16.03	16.03	0.08		5 7 7 7	20.49	23.17	17.09	25.62	10.65	10.53	25.11	0.11	17.00	17.40	18.96	14.27	13.82	14.37	17 25
	<u>Std 4</u> 0.22	0.65	0.93	0.46	1.15	0.0	0.48	0.86	0.49	0.37	0.66	0.56	1.10	1.15	1.00	0.89	0.65	0.48	0.34	0.26	0.03		644	0.42	1.36	0.76	1.55	0.29	0.29	0.53	0.03	0.32	0.33	0.16	1.44	0.42	0.72	07 C
	<u>Rfi 4</u> 12.42	39.89	32.28	18.21	29.76	0.17	15.56	14.46	20.39	21.82	26.71	14.44	31.27	34.70	36.55	30.90	31.67	13.91	13.83	13.82	0.48		ע א	20.23	22.92	11.44	21.75	10.88	10.77	22.40	0.23	15.07	16.10	18.81	13.86	13.65	13.13	16 50
	Std 3 0.05	0.06	0.06	0.10	0.19	10.0	0.07	0.16	0.16	0.16	0.04	0.11	0.75	0.03	0.05	0.04	0.04	0.12	0.08	0.09	0.04		544.2	0.15	0.32	0.26	0.52	0.06	0.05	0.22	0.04	0.10	0.06	0.07	0.25	0.34	0.47	0 75
	<u>Rfl 3</u> 1.54	2.17	1.79	2.38	1.82	0.49	1.80	1.88	4.10	4.42	4.12	1.97	1.88	2.10	1.97	1.54	1.75	2.07	2.11	2.10	1.13		2 U U	4.25	3.44	4.81	7.07	1.47	1.47	5.53	0.48	2.99	3.16	3.68	2.20	2.58	2.89	3 67
	Std 2 0.08	0.11	0.08	0.11	0.21	0.01	0.09	0.21	0.17	0.16	0.05	0.80	0.12	0.05	0.09	0.06	0.07	0.15	0.09	0.10	0.05		C P43	0.16	0.33	0.23	0.46	0.06	0.06	0.18	0.03	0.10	0.06	0.06	0.32	0.29	0.35	0 71
	<u>Rf12</u> 2.33	3.52	2.85	3.42	2.69	0.91	2.73	2.78	4.55	4.90	4.93	3.13	3.07	3.27	3.33	2.31	2.55	2.94	2.99	2.96	1.19		C U U	4.63	4.25	3.97	6.39	2.14	2.15	5.82	0.69	3.16	3.38	3.60	2.57	2.94	2.96	3 85
	Std1 0.05	0.06	0.04	0.07	0.16	0.01	0.07	0.14	0.11	0.0	0.05	0.12	0.07	0.04	0.05	0.05	0.03	0.11	0.07	0.07	0.03		5471	0.0	0.12	0.11	0.12	0.05	0.04	0.09	0.03	0.07	0.05	0.05	0.13	0.08	0.15	0 77
;	<u>Rfl 1</u> 1.72	2.57	2.18	2.24	2.16	0.73	1.98	1.84	2.96	3.16	3.09	2.03	2.38	2.42	2.40	2.01	2.17	2.06	2.12	2.07	0.89		R A 1	2.30	2.39	2.91	3.14	1.46	1.46	2.79	0.68	2.06	2.18	2.30	1.52	1.54	1.68	1 96
1	<u>Sol Az</u> 120.00	121.00	122.00	123.40	126.00	127.00	128.00	130.00	132.00	132.00	133.00	137.00	139.38	141.75	143.00	145.00	145.00	164.44	166.00	169.25	170.25		Sol A7	129.00	130.00	131.20	133.00	134.00	135.00	137.00	138.00	138.50	139.00	140.00	142.00	142.00	146.00	147.06
	<u>Sol Zen</u> 48.00	47.00	47.00	46.00	45.00	44.00	44.00	43.00	42.00	42.00	42.00	40.00	39.00	39.00	38.20	38.00	38.00	34.00	34.00	34.00	34.00		Sol 7on	66.00	65.94	65.00	64.00	63.13	63.00	62.00	62.00	61.00	61.00	61.00	60.00	60.00	58.00	58.00
1	<u>End Time</u> 152829	153250	153543	154024	155035	155156	155719	160213	160853	161046	161242	162504	163312	163939	164255	164802	164937	173813	174157	175010	175205		End Time	145311	145900	150511	151004	151636	152051	152828	153051	153416	153615	153819	154659	154830	160342	160801
nued)	<u>St Time</u> 152754	153208	153502	153927	154936	155121	155641	160123	160806	160951	161203	162410	163224	163851	164147	164717	164903	173735	174119	174921	175127		St Time	145221	145821	150422	150917	151557	152014	152750	153016	153340	153541	153746	154618	154740	160241	160711
(conti	Hgt. 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		Hot	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
4, 1983	<u>16</u>	16	16	20	20	16	16	16	16	16	16	16	16	16	8	16	16	16	16	20	16	5. 1983	ć	16	16	20	16	16	16	16	16	16	16	16	16	20	20	16
August 1	<u>Site</u> 42	84	8	51	8	28	45	32	19	18	12	68	21	69	ц Г	16	e	15	14	6	23	October (Site	16	e	69	71	102	68	21	52	19	18	12	107	106	111	112

tid 7 0.23 0.14 0.14 0.12 0.10 0.44 0.44 0.33 0.20 0.20	$\begin{array}{c} \frac{\text{Std}}{2} \\ 0.25 \\ 0.25 \\ 0.12 \\ 0.12 \\ 0.03 \\ 0.13 \\ 0.11 \\ 0.07 \\ 0.18 \\ 0.11 \\ 0.07 \\ 0.18 \\ 0.07 \\ 0.18 \\ 0.07 \\ 0.18 \\ 0.07 \\ 0.07 \\ 0.01 \\ 0.07 \\ 0.07 \\ 0.01 \\ 0.07 \\ 0$	Std 7 0.08 0.25
Rfl 7 Str Str </td <td>RA 7 6.538 6.538 7.52 7.79 7.77 7.79 7.97 7.97 4.46 4.45 4.45 3.17 2.230 3.75 2.30 3.75 2.42 4.53 1.58 1.58</td> <td><u>Rfl 7</u> 1.18 4.78</td>	RA 7 6.538 6.538 7.52 7.79 7.77 7.79 7.97 7.97 4.46 4.45 4.45 3.17 2.230 3.75 2.30 3.75 2.42 4.53 1.58 1.58	<u>Rfl 7</u> 1.18 4.78
itid itid <th< td=""><td>Std 6 0.42 0.48 0.21 0.23 0.28 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23</td><td><u>Std 6</u> 0.21 0.44</td></th<>	Std 6 0.42 0.48 0.21 0.23 0.28 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	<u>Std 6</u> 0.21 0.44
Rfile S 0.30 0.23 0.30 0.23 0.30 0.25 0.377 0.478 0.4178 0.518 0.518 0.518 0.518 0.606 0.606 0.606	Rf16 1.64 1.64 4.78 5.31 6.05 6.05 6.05 7.88 7.98 7.97 7.97 7.97 5.21 7.97 7.97 7.97 7.97 7.97 7.98 7.93 7.93	<u>Rf16</u> 3.91 8.37
kd 5 10 1.97 10 10.197 10 11 0.03 12 0.14 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 10 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 <td>Std 5 1 0.51 1 0.51 1 0.05 1 0.26 1 0.03 1 0.26 1 0.10 0.10 0.28 0.13 0.28 0.13 0.29 0.13 0.28 0.13 0.28 0.13 0.28 0.28 0.28 0.28 0.20 0.28 0.28 0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30</td> <td><u>Std 5</u> 0.54 0.56</td>	Std 5 1 0.51 1 0.51 1 0.05 1 0.26 1 0.03 1 0.26 1 0.10 0.10 0.28 0.13 0.28 0.13 0.29 0.13 0.28 0.13 0.28 0.13 0.28 0.28 0.28 0.28 0.20 0.28 0.28 0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30	<u>Std 5</u> 0.54 0.56
Rf S	Rf1.5 15.51 19.18 19.53 19.53 19.53 19.53 19.53 11.00 11.00 11.65 11.65 11.65 11.65 11.56 12.81 11.75	<u>Rfi 5</u> 10.19 11.48
1 1	Std 4 0.37 0.37 0.18 0.18 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.02 0.13 0.13 0.144 0.16 0.21 0.21 0.44 0.44	Std 4 0.57 0.47
Right Signature Si	Rf1 4 11.18 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 11.91 11.38 12.65 13.75 13.92 13.93 10.83 11.265 13.71 13.75 13.75 13.76 13.75 13.76 10.76 11.79	Rfl 4 11.41 8.16
2.14 3 1 1.12 1 1.12 1 1.11 2 1.11 2 1.11 2 1.12 1 1.12 1	$\begin{array}{c} \frac{\text{Std}}{3} \\ 0.14 \\ 0.20 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.01 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.01 \\ 0.07 \\ 0.07 \\ 0.01 \\ 0$	<mark>Std 3</mark> 0.09 0.14
Rh Sh Sh<	Rfl 3 5.42 5.42 5.42 1.50 1.50 2.22 2.256 2.256 2.275 2.275 2.275	<u>Rfl 3</u> 1.43 3.41
itd 2 itd 2 0.36 0.136 0.119 0.008 0.019 0.019 0.16 0.16	Std Std Z 0.10 0.15 0.15 0.15 0.01 0.03 0.03 0.01 0.01 0.05 0.01 0.03 0.01 0.05 0.02 0.03 0.01 0.03 0.03 0.01 0.01 0.03 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.10 0.12 0.02 0.02	<u>Std 2</u> 0.10 0.12
Rf12 5.3.42 5.3.42 5.3.42 5.44 5.5.44 5.5.45 5.44 5.5.44 5.5.44 5.5.44 5.5.5.5.	Rfl2 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.76 3.75 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.76 3.77 3.76 3.77 3.76 3.77 3.76 3.77 3.76 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77	<u>Rf12</u> 2.08 3.01
Std1 0.11 0.05 0.05 0.04 0.10 0.11 0.11	Std1 0.07 0.08 0.09 0.13 0.13 0.13	<u>Std1</u> 0.07 0.09
Rf1 1 2.09 6 3.32 - 2.36 1.44 1.44 1.44 1.48 0.75 2.68 0.75 2.68	Rfl 1 3.30 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.37 3.38 3.33 3.38 3.33 3.38 3.33 3.38 3.33 3.38 3.33 3.38 3.33 3.39 3.33 3.38 3.33 3.38 3.33 3.38 3.33 3.39 3.33 3.38 3.33 3.38 3.33 3.39 3.34 3.39 3.34 3.39 3.34 3.39 3.34 3.39 3.34 3.39 3.34 3.39 </td <td><u>Rfi 1</u> 1.44 2.52</td>	<u>Rfi 1</u> 1.44 2.52
<u>801 Az</u> 148.20 155.70 162.00 162.00 163.00 163.00 163.80 168.00	Sol Az 141.00 142.00 142.00 144.00 144.00 144.00 144.00 144.00 154.00 152.00 154.00 154.00 154.00 157.00 15	<u>Sol Az</u> 128.60 130.00
ol Zen 55.00 55.00 55.00 54.00 54.00 54.00 54.00 54.00 54.00	Sol Zen 68.00 67.75 67.00 67.75 67.00 66.00 66.00 66.00 66.00 64.00 64.00 64.00 63.00 63.00 63.00 63.00 63.00 63.00 62.00 66.000 66.000 66.000 66.000 66.00000000	<u>Sol Zen</u> 75.00 75.00
<u>dd Time</u> 51109 53222 53222 54947 55241 55241 5534 70025 70148 70148 71040 71040 71831	nd Time 5 52540 52854 52854 53806 53808 53308 54759 54759 55715 55715 55729 155729 155729 155729 155729 160143 160855 161704 161704 161704 161704 161704 162819 163536 164520 164520	End Time 142833 143327
42 11 11 12 22 82 12 12 12 12 12 12 12 12 12 12 12 12 12	1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	<u>Time</u>] 2741 3253
24 Tilued) 24 Til 1610 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1702 1702 1702 1702 1702 1702 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1653 1702 1653 1702 1653 1702 1653 1702 1653 1702 170	¹ St	14 K
に 日 (Cont 日 (1) (Cont (1) (1) (1) (1) (1) (1) (1) (1)	$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1983 bs. Hg 10 4 4 4
e 0,1% 2015 2015 2015 2015 2015 2015 2015 2015		ber 27, $\frac{1}{10}$
Octobe <u>Sit</u> 108 138 138 138 138 138 138 138 13	O 665 8 2 2 2 8 2 2 3 2 8 2 2 2 8 2 2 2 8 2 2 2 8 2 2 2 2	Octol 10 S

жщ, ,	set. S	ued) <u>it Time</u> 44450	End Time 144530	<u>Sol Zen</u> 73.00	<u>Sol Az</u> 132.00	<u>RA 1</u> 1.22	<u>Std1</u> 0.03	<u>Rf12</u> 1.70	<u>Std 2</u> 0.04	<u>RA 3</u> 1.16	Std 3 0.03	<u>Rfi 4</u> 9.14	<u>Std 4</u> 0.18	<u>RA 5</u> 8.79	<mark>Std 5</mark> 0.15	<u>Rf16</u> 3.65	Std 6 0.12	<u>Rfi 7</u> 1.10	Std 7 0.05
4 144648 1 144833	(44648 44833		144727 144008	73.00	133.00	1.26	0.04	1.74	0.04	1.19	0.02	9.53	0.23	8.96	0.21	3.71	0.11	1.13	0.04
14503	4503		145101	73.00	133.00	0.69	0.03	0.64	50 O	1.23 0 5k	0.04	10.04	0.19	9.58	0.19	3.88	0.11	1.16	0.04
14564	4564	ۍ . ا	145724	72.00	135.00	2.63	0.06	3.20	0.06	3.60	0.09	7.77	0.14	10.65	0.20	10.01		20.0 20.0	20.0 0 22
14593	4593	4 2	150023	71.50	136.00	2.15	0.07	2.56	0.08	2.91	0.11	5.92	0.17	8.47	0.16	9.15	0.18	6.72	0.13
	B E	ខ្ល	150355	21.00	136.00	2.12	0.07	2.55	0.08	2.80	0.10	7.43	0.27	9.24	0.21	8.19	0.13	5.39	0.14
	S i	38	150648	00.17	137.00	3.73	0.07	4.91	0.08	6.12	0.08	13.87	0.17	19.74	0.24]	17.16	0.27	10.02	0.17
10101 +		3 2	51235	0.0/	138.00	2.44	0.38	3.04	0.50	3.63	0.56	9.79	1.32	14.33	1.94	10.93	1.35	5.90	0.91
12101	5 5	8 2	157147	00.60	140.00	0 4 .5	0.07	4.28	0.10	5.38	0.11	12.58	0.39	17.83	0.22	14.55	0.11	8.31	0.08
1538	236	2 8	153954	67.00	141.00	7/7	c0.0	3.46	0.06	4.50	0.06	10.16	0.10	15.27	0.19	12.96	0.22	7.49	0.17
1541	5	124	154201	67.00	145.00	70.1	0.05	06.1 1 60	0.07	1.70	c0.0	20.02 20.02	9 9 9	0.60	0.28	4.69 2.00	0.17	1.45	0.08
154	2	515	154554	67.00	146.00	1.53	0.06	7.76	110	1.17		70.2	10.0	10.2	/7.0	J.03	0.13	60.I	0.06
1 154	5	924	154958	66.00	147.00	3.24	0.09	4.14	0.14	274 274	20.0 7 0 0	07.11		71.71	0.49 0.09 0.09	6.28	0.34	2.47	0.17
151	ທີ	5114	155155	66.00	148.00	4.01	0.11	5.30	0.15	6.85	0.26	15.19		10.02	70.00	60.03	200	00.1	0.45
15	ĽΩ,	5510	155549	66.00	149.00	1.61	0.07	2.31	0.09	1.63	80.0	14.40	1220	70.07	0.00	5 47	5 C	0.70 1 51	0.40
16	3	0102	160141	65.00	150.00	3.26	0.06	4.27	0.10	5.06	0.12	13.71	0.39	18.07	0,60	240	20.0	10.1	01.0
16(3	3328	160415	65.00	151.00	2.92	0.26	3.65	0.31	4.05	140	11.60	220	15.61	0.67	27.01	12.0	71.7	17.0
16	30	0631	160658	65.00	152.00	3.09	0.05	3.93	0.08	4.76	0.08	12.85	20.0	17.76	0.22	3.78	0.18	0.00 7 38	00.0 11 0
, 16	ð,	0805	160841	65.00	152.00	2.79	0.04	3.43	0.05	3.78 (0.08	12.54 (0.30	15.83	0.15	0.87	0.17	5.50	014
; 19 1	vو	3114	163141	63.00	158.00	1.25	0.05	1.85	0.06	1.63 (0.04	11.17 (0.36	12.33 (0.27	6.69	0.15	2.64	60.0
= =	~		163445	63.00	159.00	1.02	0.03	1.51	0.05	1.26 (0.05	9.48 (0.24	10.23 (0.14	5.42	0.13	2.08	0.10
	~ ~	67050	103014	63.00	159.00	1.24	0.02	1.90	0.02	1.62 (0.03	11.08	0.28	12.04 (0.19	6.71	0.10	2.69	0.05
	$\boldsymbol{\nu}$	4147	104231	67.79	161.00	1.12	0.04	1.71	0.07	1.43 (0.06	11.17 (0.43	11.69 (0.38	5.85	0.19	2.16	0.08
	u ''	1100	164432	62.00 (2.00	161.75	1.17	0.03	1.84	0.04	1.51 (0.04	12.04 (0.21	12.46 (0.15	6.21	0.12	2.27	0.06
	u 4		/70#01	00.20	162.00	1.13	0.04	1.73	0.06	1.36 (0.06	11.44 (0.33	1.69 (0.29	5.74	0.17	2.04	0.09
	5 9	11/30 11/30	104012	07.00	162.25	60.1	0.06 0.06	1.68	0.14	1.35 (0.08	11.26 (1.77	1.63 (0.61	5.71	0.26	2.03	0.11
	-	04713	145410	00.20	163.00	1.14	0.02	1.74	0.03	1.44 (0.03	11.10 (1.21	1.70 (0.17	6.17	0.07	2.35	0.04
	-		16673	07.00	104.00	1.42	0.06	7.76	60.0	1.62 (0.07	9.15 (0.72	7.38 (0.47	6.95	0.21	1.90	0.06
-			175555	07.00	100.001	1.24	0.04		0.06	1.37 (1.04	6.65 (0.70	4.87 (0.59	5.95	0.27	1.60	0.07
			1 00000	01.10	101.00	4C.C	د <u>ں</u> .	4.45	0.07	5.74 (0.10	2.85	.20	0.01	0.31 2	5.24	0.43 1	0.15	0.20
			180039	61.00	182.81	1.64	0.12	2.35 (0.15	1.72 (1.17 1	7.52 ().66 1	5.46 (0.67	6.58	0.52	1.99	0.26
≅;	~	20419	180457	61.00	184.00	2.97	0.07	3.55 (0.08	4.44 (0.10	9.78 (1.17 1	5.89 (0.30	5.37	0.33	8.64	210
≅;		0851 2021	180935	61.00	185.00	1.64	0.04	2.48 (0.05	2.33 (0.06 1	2.78 (0.30	5.15 0	.43	9.49	0.35	3.84	14
19	0.	1053	181130	61.00	185.69	1.46	0.06	2.14 (0.07	1.87 (111 1	1.90	1.29 1	2.98 (0.30	7.43	0.38	2.87	
22	7 . 1	51 4 12	181454	61.00	187.00	1.48	0.10	2.15 (0.14	1.52 (.12 1	1.13 (.57 1	0.94 0	.58	5.22	0.35	1.66	14
	\mathbf{x}	1559	181636	61.00	187.00	1.49	0.05	2.10 (0.08	1.83	.04 1	5.71 0	.88 1	5.14 C	.52	7.10	0.14	2.34	03
20 C	xo r	1811	181905	61.00	188.00	1.44	0.07	2.09	60.0	0 69.1	0.08 1	6.59 (.65 1	5.14 C	.43	6.47	0.23	1.89	601
10	5		182038	61.00	188.00	1.58	0.07	2.27 (0.13	1.97 0	.11 1	6.27 (1.79 1	5.82 0	1.71	7.58	0.35	256	11
182	2	219	182258	61.00	189.00	3.50	0.10	4.42 (0.12	5.78 0	.18 1	2.66	.31	2.87).44 2	0.77	0.47 1	1.23).27

Table 6.4 - 1984 Helicopter MMR Data

deviations of the reflectance measurements. Unless otherwise noted, all observations are nadir views. Reflectances equal to -1.00 angle. Site is the site location; Obs is the number of observations averaged; Hgt is the altitude of the helicopter in hundreds of feet; start and end times are in GMT in the form HHMMSS; Sol Zen and Sol Ăz are the solar zenith and azimuth angles; Rfl 1 Reflectance data collected from the helicopter-mounted MMR in 1984. Each table has data collected from a single day or view through 7 are the average percent reflectance measured by the MMR in bands 1 through 7. Std 1 through 7 are the standard are missing values.

10 1001 Ma

	Std 7	0.22	0.36	0.23	1.13	0.15	0.27	0.96	0.42	0.53	1.30	0.28	0.23	0.26	0.28	0.31	0.27		Std 7	0.36	0.17	0.28	0.41	0.17	0.27
	<u>Rfi 7</u>	8.11	7.18	12.16	10.45	3.30	3.58	10.11	9.41	13.38	13.44	3.31	12.14	6.66	6.57	5.34	3.29		<u>RA 7</u>	2.95	5.68	6.67	6.50	6.53	5.23
	<u>Std 6</u>	0.33	0.84	0:30	1.48	0:30	0.49	1.22	0.64	0.63	1.45	0.49	0.34	0.53	0.50	0.60	0.50		Std 6	0.76	0.21	0.33	0.62	0.24	0.48
	<u>Rf16</u>	17.75	15.50	19.08	18.17	7.97	8.41	19.42	18.23	24.99	23.30	8.28	22.32	14.10	13.70	11.64	7.95		<u>Rf16</u>	7.12	12.25	18.08	17.08	18.09	13.75
	<u>Std 5</u>	0.40	1.09	0.54	0.80	0.51	0.72	0.72	0.66	0.44	0.61	0.64	0.28	0.64	0.52	0.94	0.63		Std 5	1.38	0.22	0.33	0.48	0.20	0.57
	<u>RA 5</u>	25.85	22.05	18.74	20.99	14.16	14.61	24.48	23.10	30.40	25.52	15.69	26.12	23.37	23.12	21.65	14.70		<u>RA 5</u>	15.29	24.43	34.16	31.07	34.94	26.36
	Std 4	0.55	1.05	0.54	0.41	0.51	0.66	0.49	0.53	0.25	0.65	0.51	0.23	0.28	0.46	1.56	0.54		Std 4	0.72	0.21	0.83	0.45	0.42	0.42
	<u>Rfi 4</u>	23.04	19.02	11.79	15.47	12.20	12.41	18.65	17.89	21.31	16.69	14.23	18.21	18.76	19.91	18.30	12.95		<u>Rfi 4</u>	11.35	17.30	27.32	25.28	29.66	22.05
	Std 3	0.10	0.12	0.09	0.47	0.11	0.15	0.50	0.26	0.31	0.53	0.17	0.11	0.15	0.16	0.35	0.14		Std 3	0.17	0.05	0.07	0.14	0.10	0.10
	<u>RA 3</u>	3.70	3.32	4.60	4.52	2.16	2.32	4.61	4.17	6.46	5.82	2.53	5.39	4.86	5.23	4.32	2.41		<u>RA 3</u>	1.98	3.72	2.47	2.52	2.57	2.22
	Std 2	0.10	0.15	0.14	0.31	0.14	0.21	0.28	0.22	0.14	0.22	0.21	0.04	0.14	0.15	0.34	0.14		Std 2	0.18	0.04	0.03	0.10	0.11	0.11
	Rfl2	4.71	4.16	4.12	4.69	2.77	2.86	4.75	4.45	6.06	5.33	3.32	5.20	4.77	5.16	4.35	3.01		<u>Rf12</u>	2.35	3.86	3.77	3.93	3.76	3.09
	<u>Std1</u>	0.06	0.08	0.07	0.23	0.09	0.14	0.29	0.18	0.18	0.29	0.14	0.08	0.10	0.10	0.20	0.09		Std1	0.13	0.05	0.03	0.09	0.05	0.07
	<u>RA 1</u>	2.80	2.58	3.11	3.15	1.84	1.94	3.16	2.92	4.02	3.90	2.14	3.56	3.17	3.41	2.96	1.93		<u>Rfi 1</u>	1.52	2.56	2.10	2.11	2.32	1.99
	Az	3.17	4.08	5.83	6.75	8.50	9.33	1.17	1.17	4.75	4.75	7.42	8.33	0.08	0.08	1.00	3.42		l Az	14.72	12.83	5.42	6.33	00.8	8.92
	in Sol	12	12	12	12	12	0 12	0 13	0 13	0 13	0 13	0 13	0 13	0 14	0 14	0 14	0 14		S L	7 10	0 10	0 10	0 10	0 10	0 10
	Sol Ze	37.00	37.00	36.00	36.0(35.0(34.00	34.00	34.00	33.0	33.0	32.0	32.0	31.0	31.0	31.0	31.0		SolZ	47.6	46.0	44.0	44.0	43.0	42.0
	End Time	161153	161435	161919	162221	162835	163125	163521	163735	164532	164750	165336	165548	170057	170143	170229	170911		End Time	144924	145738	150842	151307	151816	152330
	St Time	161133	161415	161859	162201	162815	163105	163501	163715	164512	164730	165317	165528	170038	170124	170210	170851		St Time	144510	145718	150823	151247	151756	152310
	Hgt.	9	9	9	6	9	6	9	9	9	9	9	9	9	9	9	9		Hgt.	0	9	9	9	9	9
1984	Obs.	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1984	Obs.	36	12	12	12	12	12
lay 18,	Site	75	73	93	92	14	7	e	16	2	8	102	21	19	18	12	52	May 28 ,	Site	52	12	12	8	87	16

28, 1984 (cont iite Obs. Hg 3 24 6 3 24 6 93 12 6 92 12 6 75 12 6 73 12 6	3,1984 3,1984 773 120 6 773 120 6 775 120 6 775 120 6 770 122 6 888 224 6 770 122 6 888 224 6 848 120 6 84 120	nst 2, 1984 552 1284 552 122 6 888 122 6 889 122 6 889 122 6 889 122 6 889 122 6 573 122 6 575 122 6 575 122 6 575 122 6 572 122 122 122 122 122 122 122 122 122 1
inued) <u>t. St Time</u> 152739 153237 154126 154446 154835 155048	t. <u>St Time</u> 154004 154206 154626 155540 155554 160137 160137 160137 160137 160137 160105 164148 164725 165430 165430 165823 170230	t. St Time 144216 144728 145739 145739 15524 15524 165314 165314 171925 1772624
End Time 152832 153257 154146 154855 154855 155108	End Time 154024 154258 154258 154255 154927 155713 160157 160441 160157 160930 161226 164026 164026 164026 165843 165843 170250	End Time 144236 144748 145522 145529 150248 150248 165334 165334 165334 171945
<u>Sol Zen</u> 41.00 40.00 39.00 38.00	Sol Zen 39.00 39.00 39.00 37.000 37.000 37.000 37.0000000000	<mark>Sol Zen</mark> 52.00 52.00 50.00 35.00 35.00 32.00 32.00 32.00
<u>Sol Az</u> 112.88 110.67 113.33 113.58 114.17 115.00	Sol Az Sol Az 111.42 111.42 113.17 113.17 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.83 115.58 115.83 115.58 115.83 115.58 115.83 116.50 115.83 136.04 136.04 136.25 136.25 136.25 138.08	Sol Az 101.50 102.42 104.08 105.83 105.83 105.83 105.83 105.83 105.83 105.83 1134.00 134.75 152.75
Rfl 1 2.03 1.44 1.97 1.97	Rfl 1.138 2.213 2.213 2.223 3.343 2.222 2.233 2.222 2.233 2.222 2.234	Rfi 1 1.07 1.227 1.22 1.22 1.22 1.22 1.22 2.77 2.77
Std1 0.04 0.03 0.03	Std1 0.06 0.01 0.11 0.13 0.03 0.11 0.13 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11	Std1 0.10 0.07 0.07 0.07 0.07 0.07 0.07 0.0
Rf12 S 3.16 0 3.80 0 3.41 0 3.25 0	Rf12 2.990 2.990 2.9500 2.9500 2.9500 2.9500 2.9500 2.9500 2.9500 2.95000 2.95000 2.95000 2.95000000000000000000000000000000000000	Rff2 2.12 2.12 2.12 2.15 2.15 2.15 2.15 2.1
06 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	20010000000000000000000000000000000000	Idd Rf 14 14 14 1.14 11 1.14 11 1.15 11 1.12 11 1.12 11 1.12 110 1.12 111 1.15 111 1.16 112 1.16 113 1.16 116 1.16 116 1.16
27 <u>3</u> <u>54</u> 56 0.01 19 0.02 38 0.00 38 0.00 36 0.00	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>
3 RH 5 23.6 4 10.1 5 22.6 5 22.6 5 24.3 5 24.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26.9 26.9 26.9 26.9 26.9 26.9 26.9 26.9
4 Std. ² 6 0.25 6 0.25 7 0.34 7 0.34 7 0.31	14 14 146 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 11	4 5td 4 8 0.69 8 0.69 6 0.56 6 0.56 7 0.40 7 0.40 3 0.61 3 0.61
 4 Rfl 5 28.70 24.38 24.38 24.38 24.38 24.38 24.38 33.17 	R 32.62 33.66 14.96 15.39 36.89 33.42 29.84 28.42 25.23 33.54 16.21 16.21 16.21 16.21 17.00	L Rfl 5 12.50 31.09 31.77 32.60 33.63 33.63 33.63 33.63 33.63 33.63 33.63 33.63 33.63 33.63 33.63 33.63 33.63 32.33
Std 5 0.79 0.33 0.33 0.39 0.40	Std 5 0.44 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.52 0.53 0.54 0.55 0.59 0.59 0.59 0.59 0.59 0.59 0.59	<u>Std 5</u> 0.29 0.29 0.37 0.37 0.35 0.35
Rf16 15.28 7.20 16.26 15.87 14.92 15.95	Rf16 14.08 14.08 15.27 8.31 8.31 8.54 15.33 17.38 17.38 17.38 17.38 9.09 9.09 9.71 9.76	Rf16 5.26 13.75 13.75 13.75 13.75 14.16 15.48 15.48 15.64 15.64 15.64 15.64 15.64 15.64 16.37
Std 6 0.73 0.18 0.14 0.21 0.27	Std 6 0.33 0.37 0.44 0.37 0.37 0.44 0.44 0.44 0.44 0.57 0.54 0.54 0.54	Std 6 0.45 0.45 0.44 0.23 0.19 0.25 0.25
RA 7 5.86 7.50 6.21 5.30	Rfl Z 4.49 3.50 3.40 5.26 5.55 5.77 6.93 5.77 5.92 5.92 3.77 5.93	Rf1 7 5.00 3.56 3.59 4.56 3.39 4.21 3.39 6.30 6.30
Std 7 0.46 0.08 0.03 0.11 0.12	Std 7 0.13 0.15 0.15 0.15 0.16 0.16 0.16 0.33 0.33 0.33 0.33 0.23 0.23 0.23 0.33	Std Z 0.15 0.15 0.14 0.14 0.22 0.14 0.34 0.06 0.13 0.13

Std 7 0.65 0.19 0.24 0.21	0.16 0.16 0.36 0.15 0.15 0.23	0.17 0.09 0.09 0.10 0.10 0.10 0.10	Std Z 0.11 0.11 0.133 0.13 0.334 0.33 0.34 0.34 0.34 0.34 0.35 0.34 0.34 0.34 0.35 0.34 0.35 0.34 0.32 0.32 2.40 2.40	Std 7 0.00 0.00 0.00
RA 7 0.10 2.67 2.14 1.83	2.22 2.22 0.19 2.14 2.14	4.65 3.51 4.44 4.38 1.60 3.92 3.46	Rfl 7 8.73 6.93 6.93 7.82 7.82 7.82 7.82 7.82 7.82 7.82 7.82	RA 7 -1.00 -1.00
Std 6 0.30 0.40 0.71 0.71	0.50 0.16 0.37 0.50 0.50	0.43 0.50 0.31 0.33 0.33 0.33 0.33	Std 6 0.24 0.45 0.54 0.54 1.19 0.60 0.60 0.60	Std 6 0.00 0.00
Rf16 2.95 8.70 9.55 8.91	9.89 9.89 9.45 9.45 5.17	12.67 13.17 17.12 12.37 5.39 5.75 5.75 12.94 12.79	Rf16 26,000 16,07 16,23 28,74 28,74 28,74 11,66 17,66	Rf16 -1.00 -1.00 -1.00
Std 5 0.78 0.50 1.14 0.90	1.20 0.37 0.16 0.16 0.79 0.79	0.41 0.48 0.70 0.70 0.31 0.31 0.38 0.38	Std 5 Std 5 0.53 0.53 0.74 0.74 1.17 1.15 1.59 0.95 9.26 0.95	Std 5 0.91 1.32 0.78
Rfl 5 9.44 39.72 33.72	8.64 8.56 8.56 223.88 223.88 223.23	26.17 28.66 37.30 28.07 22.24 11.86 112.68 25.78 26.93	Rfl 5 49.57 49.57 49.57 30.75 55.85 55.26 51.53 30.14	RA 5 9.26 19.74 18.01
Std 4 0.72 0.43 1.18 1.31	0.21 0.49 0.21 0.63 0.63	0.74 0.30 1.21 1.21 1.43 0.29 0.28 0.31	Std 4 0.99 1.04 1.24 1.46 2.08 2.09 9.21	<u>Std 4</u> 0.56 1.21 1.13
Rfl 4 10.89 28.08 28.08 28.08	26.33 9.74 26.89 12.43	25.01 30.19 30.89 30.27 20.03 11.33 11.33 25.40 25.40	Rfl 4 86.20 56.20 31.31 55.34 31.31 55.34 55.34 55.34 53.31 53.65 58.65 35.70 35.70	RA 4 10.87 17.92 19.97
<u>Std 3</u> 0.00 0.00 0.00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Std 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Std 3 0.00 0.00
Rf1 3 -1.00 -1.00 -1.00 -1.00			Rfi 3 	Rfi 3 -1.00 -1.00
Std 2 0.10 0.12 0.12 0.12	0.15 0.08 0.10 0.10 0.11	$\begin{array}{c} 0.11\\ 0.17\\ 0.05\\ 0.05\\ 0.07\\ 0.07\\ 0.06\\ 0.12\\ 0.12\end{array}$	Std 2 0.07 0.28 0.28 0.28 0.28 0.31 1.15	<u>Std 2</u> 0.00 0.00
Rf12 1.54 3.37 2.25 3.39	1.92 1.34 1.31 2.14 2.18 2.18	2.297 2.97 2.34 2.39 2.39 2.39 2.39 2.39	Rf12 5.19 5.28 5.89 7.07 7.07 8.95 8.95 3.91	<u>Rf12</u> -1.00 -1.00
Std1 0.08 0.11 0.11 0.07	0.12 0.08 0.11 0.08 0.11	0.08 0.12 0.03 0.08 0.08 0.08 0.06	Std1 0.10 0.15	<u>Std1</u> 0.07 0.13 0.13
RA 1 0.62 1.37 2.43	0.66 0.66 0.65 1.147 1.122	2.52 1.71 1.74 1.74 1.81 1.81 1.81 1.32 1.52	Rfl 1 3.64 5.36 5.36 4.46 5.36 5.55 5.55 2.80 2.80	<u>RA 1</u> 0.57 1.45 0.87
<u>Sol Az</u> 82.08 83.83 84.67 85.00	87.17 87.17 87.17 88.83 89.33 89.33	105.83 107.58 108.50 109.33 110.17 111.08 111.92 111.92	Sol Az 90.50 93.63 93.92 93.92 93.92 93.92 95.67 101.58 117.79	Sol Az 246.50 247.50 248.50
Sol Zen 72.00 71.00 69.00	67.00 67.00 65.00 65.00 65.00	49.00 48.00 47.00 45.00 45.00 45.00 45.00	egrees Sol Zen 63.00 62.00 62.00 59.00 59.00 53.00 52.00 54.00 52.00 52.00 52.00 52.00 52.00	<u>Sol Zen</u> 65.00 66.00
End Time 124421 125018 125921 130208	130918 131437 131657 132719 133009 145622	150304 151032 151329 151955 152346 152336 152337 153318	zimuth 0 d End Time 133833 133927 134822 134822 134846 135505 135604 135604 14016 144016 144701 154356	End Time 224329 225042 225822
St Time 124401 124958 125902 130149	130858 131417 131637 132659 132659 132949	150244 151012 151309 151936 152326 152326 152328 152344	ees, view a <u>St Time</u> 133813 133907 134926 13445 134454 134926 134454 140612 144641 144641 154143	<mark>St Time</mark> 224309 225023 225802
Hgt. 66 6	, a a a a a a a a	مەممەمەمەمە) degre Hgt. 666666666666666666666666666666666666	4 6 6
1984 11 11 12 12 12 12 12 12 12 12 12 12 12 1	12222222	22222222222	x, 1984 nith 5(<u>Obs.</u> 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2	16, 198 0 <u>bs</u> 12 12
August <u>3</u> 52 52 88 89	2 3 3 3 7 7 4 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9	21 88 93 93 14 2 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3	August 3 View ze. <u>51te</u> 3 3 3 3 14 15 2 52 53 33	August <u>Site</u> 52 12 89

Std 7 0.00 0.00 0.00 0.00	Std 7 0.07 0.10 0.12 0.34 0.31 0.15 0.31 0.15	Std 7 Std 7 0.07 0.07 0.11 0.11 0.17 0.17 0.16 0.17 0.17 0.12 0.18 0.16 0.18 0.18	<mark>Std 7</mark> 0.23 0.57
RA 7 -1.00 -1.00 -1.00 -1.00	Rf1 7 3.50 1.12 1.12 4.85 4.86 7.10 7.10 1.49	Rf1 7 3.91 2.18 4.85 5.67 5.67 2.35 6.14 2.35	RA 7 10.37 8.17
<u>Std 6</u> 0.00 0.00 0.00	Std 6 0.24 0.17 0.17 0.13 0.17 0.108 0.17 0.109 0.17 0.109 0.17 0.109 0.17 0.109 0.17 0.109 0.17 0.117 0.17 0.123 0.17 0.123 0.17 0.123 0.17 0.123 0.17	Std 6 0.13 0.21 0.33 0.46 0.36 0.36 0.37 0.38 0.39 0.32 0.32 0.32 0.32	Std 6 0.29 0.44 1.21
Rf16 -1.00 -1.00 -1.00 -1.00	Rfl6 11.77 15.71 4.76 5.98 15.71 15.72 15.73 15.74 15.75 15.71 15.72 15.73 15.93 15.93 19.43 19.43 19.43 5.63	Rfl6 12.57 14.04 5.66 6.09 13.75 13.75 13.75 13.75 14.06 6.03 14.08 6.35 6.35	Rf16 18.43 17.23
Std 5 0.69 1.87 1.78 0.56 0.33	<u>844 5</u> 0.75 0.27 0.27 0.27 1.15 1.15 1.13	<u>Std 5</u> 0.17 0.85 0.85 0.45 0.64 0.64 0.78 0.47 0.24 0.24	<mark>Std 5</mark> 0.30 1.07
Rf1 5 34.04 24.36 26.13 7.97 7.97	Rfl 5 28.52 28.52 34.57 112.04 113.62 31.14 31.22 31.32 <	Rfl 5 22.61 22.61 23.80 11.54 12.74 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00	<u>Rfi 5</u> 28.09 32.96 29.80
<u>Std 4</u> 0.69 1.89 0.32 0.16	Std 4 0.94 0.94 3.73 0.26 3.04 0.35 3.147 0.95 0.95 0.95	Std 4 0.17 0.17 0.40 0.47 0.40 0.40 1.00 0.65 0.46 0.31 0.31 0.31 1.50 0.31	<u>Std 4</u> 0.37 1.16 2.29
Rfl 4 35.85 24.30 28.49 11.33 11.37	Rfl 4 30.72 36.90 35.46 31.93 31.93 22.37	Rfl 4 25.97 25.97 25.63 10.78 11.99 11.99 26.40 26.41 13.77 21.77 12.14 12.14	<u>Rf1 4</u> 29.37 31.79 34.30
Std 3 0.00 0.00 0.00 0.00	Std 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Std 3 0.12 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.04	<u>Std 3</u> 0.14 0.59
RA 3 -1.00 -1.00 -1.00 -1.00	Rf1 3 	Rfl 3 2.54 2.54 2.40 2.41 3.16 2.80 2.80 2.81 1.99 1.99 1.99 1.99 1.99 1.99 1.99	RA 3 7.50 8.19 7.23
<u>Std 2</u> 0.00 0.00 0.00	Std 2 0.07 0.05 0.12 0.12 0.12 0.13 0.13	Std 2 0.09 0.12 0.11 0.11 0.11 0.14 0.05 0.04 0.07	Std 2 0.14 0.17 0.66
Rf12 -1.00 -1.00 -1.00 -1.00	Rf12 2.60 3.53 3.53 3.58 3.58 3.78 3.78 3.78 5.05 5.05	Rf12 3.34 2.58 3.03 3.03 2.58 2.58 2.58 2.58 2.58 2.58 2.57 2.58 2.57 2.57 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58	Rf12 8.99 8.74 9.15
<u>Std1</u> 0.08 0.21 0.15 0.27 0.59	<u>Std1</u> 0.04 0.08 0.08 0.11 0.11 0.11 0.12	<u>Std1</u> 0.07 0.09 0.08 0.01 0.05 0.05 0.05	<u>Std1</u> 0.10 0.21
Rfl 1 1.83 1.08 1.14 0.24 0.24	RA 1 1.83 1.08 1.18 3.05 2.35 2.35 2.25 2.25 1.16	RA 1 1.87 1.87 1.56 1.50 2.15 2.15 2.15 1.65 3.00	<u>RA 1</u> 6.20 6.35
<u>Sol Az</u> 249.50 250.50 250.50 250.50 259.75 252.42	Sol Az 231.83 247.79 247.79 240.58 241.58 241.58 241.58 241.58 241.58 241.58	Sol Az 138.92 140.75 142.50 143.42 143.33 144.33 143.42 143.42 151.25 151.25 151.50 151.50 151.50 153.33	<u>Sol Az</u> 104.92 105.75 107.50
<u>Sol Zen</u> 68.00 69.00 70.00 70.00	degrees Sol Zen 54.00 55.00 60.00 60.00 61	Sol Zen 50.00 50.00 49.00 49.00 48.00 47.00 47.00 47.00 47.00	tegrees <u>Sol Zen</u> 71.00 70.00 69.00
End Time 230121 230642 230912 231432 231628	Zimuth 0 End Time 213431 223333 221013 221122 22142 221552 221552 221552 221552 223529	End Time 162525 162136 163136 164115 164115 164727 164727 165242 165747 170218 170218 170233 172233	zimuth 0 c End Time 134447 135349 140036
inued) <u>St Time</u> 230102 230622 230853 230853 231220 231608	es, view a <u>St Time</u> 213411 213529 213529 221422 221422 221532 221532 221532 221532 221532 221532	St Time 162505 163116 163115 163116 16337 164055 164055 164055 164055 164055 164055 164055 164055 165048 165728 170158 170153 171953	es, view a <u>St Time</u> 134428 135329 140016
4 (cont Hgt. 6 6 6 6 6	4 Ddeg Hgt 6666666666666666666666	1984 Hgt 66666666666666666666666666666666666	1984) degre <u>Hgt.</u> 6 6
16, 198 12 12 12 12 12 12 12 12	16, 198 10, 198 005 24 12 12 12 12 12 12 12 12 12 12	24 16, 00 12 12 12 12 12 12 12 12 12 12 12 12 12	er 16, 005. 12 12 12
August 5 5ite 88 3 3 16 14 2	August View ze 93 93 93 93 14 15 88 89 88 89 88 89 52	Septemt <u>Site</u> 93 93 93 93 14 16 13 102 12 12 12 52	Septemt View ze <u>52</u> 12 102

<u>Std 7</u> 0.25	0.95	0.51 0.51	0.53	0.93	0.42	0.94	0.78	0.53	0.24	0.12	0.71	0.04	0.18	0.04	0.08		t			17.0	0.04	67.0	0.23	0.11	60.0	0.45	0.54	5.24	0.08	0.18	0.12	0.06	0.27	0.06	0.11	0.04
<u>Rfi 7</u> 9.00	12.91	8.13	10.94	7.14	7.44	8.12	11.78	10.61	4.47	4.82	5.61	1.97	5.44	4.38	4.56		t t	XH /		61.0 6	1./3	6.0 2	79./	4.17	4.41	2.19	4.76	7.88	4.42	5.61	4.38	1.40	1.69	4.77	4.72	2.28
Std 6 0.47	1.26	1.11	0.64	1.63	0.72	1.67	1.21	1.09	0.51	0.42	1.28	0.10	0.56	0.08	0.18			5td 6	0.04		/0.0	0.44	0.43	0.49	0.62	0.83	0.71	6.96	0.16	0.38	0.40	0.84	0.59	0.17	0.22	0.23
<u>Rf16</u> 22.83	31.30	22.40	26.87	17.10	15.88	17.50	30.32	27.92	12.98	13.97	15.43	5.98	15.11	10.94	11.20			<u>Kf16</u> 6 10	1.0	10.21	4.48	14.96	19.48	11.81	14.15	00.7	6.70	11.65	13.07	16.16	13.47	5.64	4.82	14.13	13.59	8.26
<u>Std 5</u> 2.14	7.53	1.83	0.47	1.98	1.13	2.53	1.33	1.69	1.75	5.84	2.13	0.14	0.64	0.13	0.32		•	Std 5		74.0	0.13	3.94	0.94	1.28	0.36	1.91	0.84	6.79	0.31	0.61	3.71	2.53	2.57	3.02	2.95	2.61
<u>Rfl 5</u> 43.03	56.01	46.38	50.32	33.08	44.31	47.10	51.16	47.58	25.38	28.15	29.57	12.58	26.28	18.66	18.82		•	<u>Kfl 5</u> 12 74	14.10	77.17	11.69	36.58 25.28	37.93	27.07	28.30	24.83	12.40	17.16	25.67	30.76	33.29	17.42	16.55	39.33	28.71	23.50
<u>Std 4</u> 0.86	0.79	1.65	0.39	1.06	1.11	2.19	1.61	1.81	1.08	1.01	1.68	0.21	0.69	0.15	0.41		•	Std 4	1 1 1 1 1 1 1 1 1	1.1	0.17	0.73	0.80	1.73	0.28	0.81	0.32	2.17	0.36	0.72	0.33	0.10	0.85	0.80	0.59	0.40
<u>Rfi 4</u> 48.47	59.23	49.97	52.02	35.07	26.81	30.05	56.35	51.38	28.86	29.05	30.44	14.37	29.44	18.41	18.79		 	Rf 4	12.01	cc.12	14.39	31.35	41.76	28.29	29.43	19.87	13.37	13.63	28.49	34.26	31.39	10.28	10.03	30.59	29.16	21.64
Std 3 0.21	0.59	0.21	0.30	0.50	0.28	0.69	0.57	0.39	0.15	0.02	0.37	0.02	0.08	0.04	0.03			Std 3	01.0	0.16	0.05 2 2 2	0.14	0.18	0.06	0.04	0.23	0.56	3.24	0.07	0.09	0.08	0.02	0.06	0.04	0.05	0.03
<u>Rfl 3</u> 6.65	8.58	5.47	6.86	5.32	5.61	6.55	6.95	6.06	2.78	2.52	2.88	2.49	3.18	3.26	3.31		:	RFI 3	<pre>// 1</pre>	3.93	2.40	3.51	4.36	2.69	2.67	2.17	5.55	6.08	2.18	2.65	2.69	2.04	2.13	2.74	2.82	2.41
Std 2 0.21	0.43	0.26	0.33	0.43	0.31	0.77	0.54	0.44	0.31	0.05	0.46	0.03	0.15	0.05	0.03			Std 2	77.0	0.18	0.06	0.19	0.16	0.07	0.05	0.27	0.57	2.57	0.13	0.10	0.11	0.06	0.13	0.03	0.08	0.06
<u>Rf12</u> 9.26	10.92	6.91	8.53	7.11	6.98	8.06	9.49	8.53	3.84	3.64	4.11	2.57	4.18	3.82	3.84			Rfl2	0.2	4.59	3.12	5.49	6.26	3.60	3.62	2.93	6.02	6.38	3.29	4.04	3.80	1.92	2.00	3.48	3.48	3.03
Std1 0.12	0.30	0.18	0.22	0.33	0.23	0.58	0.41	0.31	0.19	0.03	0.36	0.04	0.09	0.04	0.03			Std1	0.10	0.11	60.0	0.14	0.11	0.07	0.05	0.23	0.37	2.26	0.07	0.08	0.07	0.05	0.11	0.02	0.06	0.05
<u>RA 1</u> 5.61	6.85	5.17	6.22	4.26	5.16	6.00	6.32	5.65	2.64	2.41	2.70	1.80	2.73	2.55	2.56			RA 1	71.7	2.82	2.09	3.22	3.91	2.70	2.72	1.88	3.97	4.59	2.26	2.63	2.60	1.46	1.53	2.68	2.67	1.99
<u>Sol Az</u> 109.17	112.67	111.75	113.50	114.33	116.08	116.08	118.67	118.67	217.50	218.50	226.71	228.08	229.08	230.08	227.10			Sol Az	104.92	106.67	107.50	110.08	112.96	112.58	113.50	117.63	117.00	116.92	119.50	120.42	217.50	220.67	221.33	222.33	222.33	223.25
egrees Sol Zen 67.00	66.00	65.00	64.00	63.00	62.00	62.00	60.00	60.00	58.00	59.00	59.00	64.33	65.00	66.00	66.00		degrees	Sol Zen	11.00	69.75	69.00	67.00	66.00	64.00	64.00	63.00	62.00	61.00	59.00	59.00	58.00	60.00	60.00	61.00	61.00	61.00
simuth 0 de <u>End Time</u> 141146	141722	142628	143401	143816	144735	144844	145929	150036	205442	205831	210113	213805	214116	214519	214619		zimuth 180	End Time	134/44	135603	140259	141347	142031	143122	143556	144116	145048	145149	150648	150803	205216	210703	210829	211239	211411	211639
continued) es, view az <u>St Time</u> 141126	141600	142608	143342	143756	144715	144825	145909	150017	205422	205811	205947	213746	214057	214500	214603		es, view a	St Time	134/24	135544	140239	141327	141930	143103	143536	144020	145028	145129	150628	150744	205156	210644	210809	211219	211351	211620
984 (c degre <u>Hgt.</u> 6	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	1984	degre	<u>Hgt.</u>	م	9	9	9	9	9	6	9	9	9	9	9	9	9	9	9	9	9
rr 16, 1 lith 50 <u>Obs.</u> 12	36	12	12	12	12	12	12	12	12	12	24	12	12	12	10	er 16,	uith 50	S S S S S S S S S S S S S S S S S S S	17	12	12	12	24	12	12	24	12	12	12	12	12	12	12	12	12	12
Septembe View zen <u>Site</u> 88	68	16	ę	61	2	14	92	93	75	93	92	102	21	19	18	Septemb	View zei	Site	25	12	102	88	6 8	16	ŝ	61	14	7	93	92	73	14	2	ŝ	16	61

<mark>Std 7</mark> 0.26 0.50 0.19	Std 7	0.04 0.09	0.09	0.12	0.22	0.21	0.12	0.17	0.72	0.11	0.24	0.06	0.16	0.09	0.12	0.10
<u>RA 7</u> 6.18 6.36 3.28 3.28	RA 7	1.34 1.25	1.80 75	1.42	4.63	3.51	3.66	1.36	2.17	1.51	1.59	2.59	1.98	2.46	2.72	2.87
<u>Std 6</u> 0.43 1.01 1.43 0.50	Std 6	0.07 0.18	0.20	0.28	0.31	0.42	0.27	0.38	1.67	0.27	0.42	0.17	0.43	0.20	0.21	0.17
<u>Rf16</u> 16.49 20.60 8.86	Rf16	4.38 4.22	5.84 6 03	4.73	10.98	8.95	9.27	4.35	5.75	4.66	4.96	8.27	6.62	6.50	7.00	7.28
Std 5 0.40 0.74 1.37	Std 5	0.12 0.28	0.39	0.46	0.24	0.67	0.51	0.70	3.09	0.49	0.68	0.33	16.0	0.43	0.29	0.24
<u>RA 5</u> 30.08 33.30 37.84 18.87	RA 5	10.47 9.90	14.12	11.03	20.61	17.20	17.81	9.71	11.74	10.18	11.19	19.14	15.93	12.70	13.17	13.65
Std 4 0.65 0.83 0.83	Std 4	0.13 0.28	0.44	0.54	0.21	0.47	0.81	0.83	2.98	0.57	0.75	0.39	0.93	0.45	0.39	0.26
Rfl 4 31.66 35.30 37.01 15.95	Rfl 4	10.90 11.20	16.51 12 87	12.93	19.18	17.22	18.20	10.85	12.35	11.56	12.84	23.09	19.47	13.51	13.65	14.04
Std 3 0.21 0.07 0.05	Std 3	0.10 0.06	0.08	0.07	0.08	0.10	0.11	0.07	0.36	0.06	0.07	0.06	0.11	0.06	0.08	0.07
Rfl 3 3.64 3.45 2.55	<u>Rfi 3</u>	2.11	2.27 2.36	1.90	3.97	2.93	3.10	1.74	2.04	1.85	1.78	2.72	2.08	2.14	2.36	2.46
<u>Std 2</u> 0.19 0.50 0.11	Std 2	0.08 0.08	0.06	0.12	0.06	0.13	0.11	0.12	0.42	0.09	0.11	0.06	0.13	0.07	60.0	0.07
Rf12 4.94 5.14 2.68	Rf12	1.96 2.09	2.54 2.54	2.37	3.98	3.27	3.46	2.04	2.46	2.29	2.26	3.25	2.59	2.37	2.55	2.62
<u>Std1</u> 0.12 0.24 0.10	Std1	0.0 0.06	0.05	0.08	0.06	0.07	0.07	0.10	0.31	0.07	0.08	0.03	0.06	0.04	0.05	0.05
<u>Rfi 1</u> 3.04 3.14 1.95	<u>Rfi 1</u>	1.10	1.23	1.42	2.34	1.95	2.00	1.21	1.43	1.38	1.32	1.80	1.50	1.35	1.44	1.53
<mark>Sol Az</mark> 224.25 225.25 227.17 227.17	Sol Az	110.33 112.67	111.25	114.67	115.50	116.00	119.44	117.17	121.77	118.92	123.28	125.83	129.88	127.58	130.79	131.75
degrees Sol Zen 62.00 63.00 64.00	Sol Zen	70.00 69.50	69.00 67 47	67.00	66.00	65.50	65.00	64.00	64.00	63.00	63.00	58.00	57.42	57.00	57.00	57.00
zimuth 180 End Time 212151 212438 212438 213448	End Time	140406 140828	141200 142110	142548	143102	143409	143712	144146	144625	144819	145305	152507	152740	153145	153330	153515
ontinued) es, view a <u>St Time</u> 212132 212604 213428	St Time	140346 140738	141140	142528	143042	143350	143544	144126	144420	144800	145133	152447	152643	153125	153231	153426
1984 (c.) degre Hgt. 6 6 6	1984 Hgt.	o o	vov	o o	9	9	9	9	9	9	9	6	9	6	9	9
er 16, nith 50, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,	er 23, Obs.	5 12	212	12	12	12	36	12	4 8	12	36	12	24	12	24	24
Septemb View zer <u>Site</u> 89 88 88 10	Septemb <u>Site</u>	7 4	61 10	102	12	19	18	42	52	6 8	48	124	125	122	121	119

7.0 Thematic Mapper Simulator Data

7.1 Introduction

The NS001 Thematic Mapper Simulator (TMS) was flown on the NASA C-130 aircraft over the SNF study area. The TMS was a scanning radiometer with eight wavelength bands (see Table 5.2). Band 8 was a thermal band and not processed in this study. The C-130 flew a "crisscross" pattern over the SNF, which provided a variety of sun and view angles. The TMS data were processed to provide reflectance values of study sites. These data are useful in the analysis of the bidirectional reflectance function of forest canopies. TMS data were collected and processed for three days: July 13 and August 6, 1983; and June 28, 1984.

7.2 Data Processing

Several processing steps were required to turn raw TMS data into physically meaningful numbers for the test sites.

The TMS scanner sweeps through view angles of plus or minus 50 degrees. This introduces both geometric distortions and varying atmospheric path lengths across the scan line. At extreme scan angles, a pixel covers an area on the ground several times larger than at nadir. At the nominal 1524 meter (5,000-foot) altitude flown, a nadir pixel covers 3.81 meters along the scan, expanding to 9.22 meters at 50 degrees off nadir. To compensate for this distortion, the data were linearly resampled to a constant pixel size, the same size as the nadir pixel. The scan-angle-corrected images from different flight lines were then registered to a common image. The registration algorithm used control points to remove distortions locally rather than globally, and was effective in correcting for perturbations introduced by variations in aircraft motion. Sites were located in the imagery using photographs, descriptions of site locations, first hand knowledge and maps. Digital count values for areas four by four pixels, approximately 16 by 16 meters, were extracted from each flight line. Using the calibration data provided for each scan line, these values were converted to radiance values by subtracting the low blackbody radiance count and multiplying by the radiance calibration factor.

The TMS radiance values were converted to reflectances using values for insolation, atmospheric transmittance, and path-scattered radiance for the appropriate solar and view angles. No measurement of these values was made, so the LOWTRAN6 atmosphere model was used to generate them. Scattering contributions calculated from the path between the canopy and the sensor were subtracted from the sensor-detected radiances and divided by the incident flux to generate reflectance factors.

7.3 Results

Corrected canopy reflectance values for 3 days are presented in Table 7.1. The sun and view angles are referenced to the same coordinate system centered on the observation point. Standard spherical polar coordinates, with zero-degree azimuth due north, are given. Note that the sensor and the Sun are in line when they have the same coordinates, i.e. the sensor looks at its shadow. Errors in the determination of these angles are possible due to the lack of precise aircraft position. The sensor zenith angles were determined from the sensor scan angle and should be accurate to within a degree. The sensor azimuth angles were determined from plotting the center points of a nadir view camera on an air photo of the area and connecting them to determine the aircraft heading. Because of the errors in this method, view azimuth accuracy is probably no more than 2 to 3 degrees. Solar zenith and azimuth were determined computationally from the time at the beginning of each flight line and should be within a degree. Sites referred to as 0 and 999 in the tables are observations of water. **Table 7.1 - Thematic Mapper Simulator Data**

Canopy reflectance values were determined for 3 days from TMS. The NASA C130 flew several flight lines over the SNF to collect data at several view and solar angles for each site. The view and solar angles are in the same coordinate system with zero-degree azimuth being due north. Reflectance values were determined for sets of four-by-four pixels at each site and are reported as average precent reflectance and standard deviation for each TMS band. Sites 0 and 99 are water sites.

<u>itd 7</u> - 0.27 0.56 0.43 0.43 0.76	- 0.21 0.61 0.50 0.43 0.59	- 0.25 0.59 0.46 0.66 0.71	- 0.28 0.52 0.33 0.79 0.59
Rf1Z 5 0.25 0.59 1.83 4.24	- 0.50 2.47 0.54 1.91 3.76	- 0.40 2.59 1.35 2.05 3.86	- 0.33 2.94 1.09 3.35 1.82
<u>Std 6</u> 0.45 0.29 0.55 0.55 1.01	0.56 0.26 0.67 0.51 0.64 0.51	0.37 0.18 0.78 0.58 0.86 1.14	0.71 0.32 0.81 0.81 1.14 0.81
Rf16 4.57 4.34 8.21 5.03 6.95 10.26	4.46 4.63 8.50 4.94 7.29 9.74	4.63 4.27 8.81 5.28 7.35 7.35	4.18 4.37 8.78 6.13 9.17 6.42
<u>Std5</u> 1.70 1.82 1.33 1.54 2.36	1.69 1.06 1.14 2.06 2.52 1.02	1.47 0.74 1.38 1.44 2.65 2.65	1.87 0.51 2.06 1.89 2.87 2.00
Rf15 16.95 16.61 25.94 18.40 22.81 29.13	16.44 15.61 25.79 17.35 23.62 29.46	17.77 16.19 26.93 19.32 24.48 28.99	14.82 14.60 25.62 20.11 20.11 25.81 21.34
<u>Std 4</u> 1.74 1.13 1.15 1.15 2.40 2.40	1.70 1.14 0.96 1.76 2.20 0.87	1.49 0.69 1.11 1.39 2.23 2.63	1.67 0.59 1.62 1.55 2.32 2.32 1.88
Rf14 14.34 13.77 21.21 15.04 18.14 23.42	13.72 12.29 20.76 13.85 18.60 24.30	15.12 13.12 21.69 15.58 19.59 22.83	12.02 11.30 19.71 15.76 19.49 16.78
Std 3 0.28 0.28 0.39 0.31 0.40	0.37 0.17 0.45 0.45 0.47 0.34	0.32 0.19 0.45 0.30 0.51 0.52	0.28 0.16 0.29 0.37 0.67 0.43
Rf13 2.31 1.33 4.70 2.68 3.70 5.48	2.33 1.44 4.84 2.48 3.84 5.83	2.44 1.44 5.00 3.93 3.93 5.82	1.99 1.16 4.69 3.07 4.75 3.23
<u>Std 2</u> 0.36 0.28 0.68 0.41 0.35 0.61	0.46 0.32 0.35 0.51 0.70 0.30	0.46 0.20 0.58 0.41 0.78 0.86	0.57 0.26 0.56 0.93 0.93
Rf12 4.47 3.00 7.82 4.75 6.17 8.42	4.37 2.90 8.01 4.53 6.32 8.92	4.70 2.94 8.33 4.85 6.57 8.86	3.88 2.62 7.61 5.15 7.43 7.43 5.31
Std 1 0.26 0.36 0.21 0.21 0.33	0.22 0.10 0.21 0.23 0.36 0.14	0.19 0.21 0.33 0.14 0.31 0.43	0.31 0.13 0.19 0.27 0.24
Rf11 3.97 2.54 6.33 3.91 4.71 6.01	3.92 2.46 6.39 3.80 4.71 6.40	4.08 2.32 6.57 3.94 4.72 6.43	3.38 1.94 5.92 4.01 5.54 3.69
View Az 90.00 88.00 50.00 50.00 320.00 320.00	90.00 88.00 50.00 268.00 2263.00 233.00 320.00	90.00 88.00 50.00 2233.00 320.00	90.00 88.00 50.00 268.00 323.00 320.00
<u>view Zen</u> 3.00 33.70 20.86 17.71 19.57 23.29	1.14 33.14 22.28 17.71 19.29 25.57	1.43 32.57 23.28 18.14 19.00 29.43	7.29 38.00 16.29 9.71 27.57 3.00
Sol Az 94.33 97.10 99.97 102.75 105.41 110.37	94.33 97.10 99.97 102.75 1105.41 110.37	94.33 97.10 99.97 102.75 1105.41 110.37	94.33 97.10 99.97 102.74 105.41 110.37
<u>Sol Zen</u> 56.16 53.84 51.53 49.40 47.46 44.13	56.16 53.84 51.53 49.40 47.46 44.13	56.16 53.84 51.53 49.41 47.46 44.13	56.16 53.84 51.53 49.40 44.13
3, 1983 <u>Fight</u> 1 3 5 6	C C 4 5 9	с с с 4 с у	н О Ф 4 Ю Ф
July 1. Site 2 2 2 2 2 2 2 2 2 2 2 2 2	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ដ ភូមិ ភូមិ ភូមិ ភូមិ	57 57 57 57

<u>Std Z</u> 0.61 0.59 0.52 0.52 0.57	- 0. 49 1.10 0.50 0.91 0.57	- 1.02 0.36 0.29 0.29	Std Z 0.23 0.23 0.21 0.11 0.115 0.15 0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.23 0.22 0.22 0.22 0.23 0.23 0.23 0.22 0.22 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22 0.23 <	0.19 0.61 0.37 0.37 0.35 0.43
Rf1Z - 2.50 11.30 4.31 6.23 8.06	- 2.34 11.10 5.53 6.25 7.31	- 3.00 -1.30 -1.30 -1.30 -1.50	Rf1Z -0.96 -0.92 -0.79 -0.79 -0.58	2.47 4.42 3.62 3.47 3.35 3.35 3.54
<u>Std 6</u> 0.91 1.26 0.41 1.09 1.72	1.10 0.99 1.08 0.92 1.00 0.75	0.29 0.92 0.21 0.25 0.17 0.15	Std 6 0.16 0.13 0.14 0.12 0.10 0.17 0.17	0.52 1.30 1.04 1.15 0.54 0.72 0.99
Rf16 16.79 9.10 22.87 11.27 14.93 18.16	16.23 8.45 21.24 12.87 13.12 14.84	0.24 3.74 0.25 0.28 0.12 0.12	Rfl 6 0.22 0.10 0.10 0.28 0.28 0.13 0.13 0.03	11.69 15.77 14.93 14.29 13.61 12.13 13.21
<u>Std 5</u> 2.18 3.07 1.49 2.52 2.52 2.52	3.20 3.14 1.02 2.28 2.28	0.10 1.15 0.09 0.11 0.11 0.09	Std 5 0.27 0.22 0.22 0.22 0.22 0.22	2.13 4.66 3.26 3.58 2.37 2.65 3.09
<u>Rf15</u> 39.38 51.43 31.57 38.98 46.09	37.17 25.28 45.02 34.32 32.10 37.23	0.73 5.36 0.70 0.69 0.63 0.46	Rf15 0.46 0.50 0.41 0.41 0.45 0.45	45.44 52.31 49.15 48.30 47.33 47.41
<u>Std 4</u> 2.08 1.20 2.10 1.62 1.99	2.59 2.54 1.01 2.07 1.64 1.80	0.00 0.99 0.17 0.13 0.13	<u>Std</u> 4 0.00 0.00 0.00 0.00 0.00	1.99 4.34 3.33 3.20 2.32 2.73
Rf14 30.26 39.26 39.26 23.50 35.56 35.56	27.65 33.40 25.06 223.98 28.39	0.14 4.25 0.17 0.24 0.09 0.28	Rfl 4 0.52 0.32 0.32 0.14 0.36 0.29	39.99 39.73 39.73 39.61 38.48 37.79 39.20
Std 3 0.41 0.39 0.39 0.42 0.42 0.36	0.61 0.34 0.63 0.43 0.59 0.55	0.10 1.24 0.14 0.12 0.12 0.16 0.00	Std 3 0.00 0.15 0.08 0.13 0.13 0.13	0.17 0.59 0.33 0.35 0.23 0.23 0.23
Rf1 <u>3</u> 7.62 3.31 11.03 4.13 5.72 7.04	8.23 3.54 112.09 6.24 8.23	1.02 6.13 1.26 1.40 1.12 1.12	Rf13 1.27 1.24 1.43 1.35 1.35 1.35 1.39	2.54 3.34 3.27 3.33 3.06 3.14
<u>Std 2</u> 0.50 0.32 0.36 0.36 0.44	0.81 0.44 0.33 0.62 0.70 0.59	0.29 1.25 0.18 0.14 0.14 0.13	Std 2 0.14 0.14 0.13 0.13 0.11 0.12 0.12 0.12 0.16 0.16	0.33 0.49 0.45 0.34 0.32 0.33
Rf12 5.73 5.73 6.80 8.87 8.87 10.78	11.85 5.78 16.68 8.29 9.18 9.18	1.71 6.70 1.83 1.93 1.59 1.31	Rf12 1.76 1.98 1.87 1.87 1.87 1.84 2.03	4.56 5.74 5.31 5.31 5.18 5.18 5.14
Std 1 0.33 0.23 0.19 0.33 0.33 0.33 0.33	0.41 0.19 0.33 0.27 0.36 0.36	0.17 0.78 0.11 0.13 0.13 0.10	Std 1 0.08 0.13 0.10 0.10 0.10 0.15	0.15 0.53 0.23 0.26 0.19 0.17
Rf11 9.73 9.73 4.52 4.52 13.52 5.03 5.03 7.26 8.06	9.69 4.34 13.56 5.73 7.38 8.19	2.73 6.83 2.78 2.66 2.33 1.80	Rf11 3.01 2.58 2.48 2.43 2.55 2.55 2.65	3.46 4.59 4.11 3.92 3.81 3.59 4.11
<u>View Az</u> 270.00 268.00 228.00 233.00 330.00 320.00	270.00 268.00 268.00 230.00 233.00 320.00	90.00 88.00 50.00 320.00 320.00	View Az 313.50 313.00 270.00 36.00 40.50 262.50 266.50	313.50 133.00 90.00 216.00 40.50 262.50 266.50
<u>View Zen</u> 34.57 2.29 48.00 18.71 45.57 39.00	31.00 4.29 46.00 45.43 33.29	12.00 40.57 11.43 17.43 19.29 8.57	View Zen 44.89 1.25 1.69 7.03 46.52 33.57 17.40	37.88 11.56 0.93 5.08 39.41 33.37 18.08
Sol Az 94.31 97.08 99.96 102.73 102.73 105.40 110.35	94.31 97.08 99.96 102.73 105.40 110.35	94.33 97.10 99.97 102.75 102.41 110.37	Sol Az 113.47 118.80 135.18 139.86 134.41 126.96 121.50	113.47 118.80 135.18 139.66 144.41 126.95 121.50
ontinued) <u>Sol Zen</u> 56.17 53.85 51.54 49.41 47.47 44.14	56.17 53.85 51.54 49.41 47.47 44.14	56.16 53.84 49.40 47.46 44.13	Sol Zen 48.96 45.82 38.50 37.03 35.70 41.76 41.38	48.96 45.82 38.50 37.03 37.03 41.76 44.38
, 1983 (a Fight 1 2 3 3 6 6 6			t (, 1983 1 1 2 2 5 5 7 6 7 7	てのちゅららて
July 13 Site 58 58 58 58 58 58 58 58	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8888888	Augus Site 0 0 0 0 0 0 0	******

Augus Site	t 6, 1983 (Fight	(continued) Sol Zen	Sol Az	<u>View Zen</u>	<u>View Az</u>	<u>Rfi 1</u>	<u>Std 1</u>	<u>Rf12</u>	5td 2 0 29	<u>7 30</u>	017	Rf14 5	51d 4	Rf15 12.20	<u>Std 5</u> 2.41	<u>Rf16</u> 10.41	Std 6 0.48	Rf17 5	14Z
۲ ۲ ۲	c	48.96 15 83	118.80	33.64 18.01	133.00	4.65	0.22	5.91	0.31	3.45	0.21	12.40	5.36	50.66	2.48	13.96	0.86	3.54	0.42
c, c	4 6	38.50	135.18	6.49	00.06	3.79	0.19	5.25	0.23	3.07	0.20	37.97	1.51	45.68	1.56	12.89	0.77	2.83	0.40
۲ ۲) 4	37.03	139.66	4.97	216.00	3.67	0.15	5.28	0.26	3.13	0.15	39.31	1.83	46.47	2.27	13.20	0.95	3.14	0.51
73	ري ،	35.70	144.41	39.54	40.50	3.37	0.20	4.73	0.24	2.81	0.17	37.04	1.81	44.26	1.92	11.63	0.50	2.66	97.0
22	9	41.76	126.95	29.96	262.50	3.24	0.18	4.41	0.35	2.57	0.16	34.66	2.66	40.39	2.50	10.61	0.56	2.14	/7.0
23	7	44.38	121.50	13.66	266.50	3.63	0.15	4.94	0.34	2.86	0.18	36.96	2.84	43.99	3.00	11.48	96.0	7.84	0. 44
2	-	40 OK	113.47	34.87	313.50	191	0.22	4.16	0.23	2.16	0.13	41.03	2.46	47.42	1.92	12.14	0.50	2.93	0.40
* ?	- r	45.90	118.80	16.40	133.00	4.36	0.14	5.63	0.23	3.21	0.22	43.66	2.37	52.93	2.31	15.26	0.57	3.96	0.31
4	4 6	40.04 20.04	125 10	CE-01		2 01	110	90.5	0.16	3.12	0.11	41.78	1.27	51.04	1.35	15.47	0.48	3.91	0.29
\$ 2	n •	00.00 00.00	01.001	7 E.A	8 9 8 9	3.37	012	4 63	0.25	2.71	0.17	39.37	1.82	48.20	2.07	14.53	0.73	3.50	0.38
4	ф° L	57.00	00'4CT	10 2V	40 E0	32.6	0.73	4.97	0.25	2.86	0.14	40.02	1.44	48.54	1.71	13.90	0.51	3.42	0.24
4	n v	0/.00			05 050	0.00 1 Å 1	0.34	4 46	02.0	2.65	0.43	38.42	4.91	46.11	5.27	13.13	1.61	2.92	0.62
4	0 5	41.70	121.64	5.77	266.50	3.60	0.19	4.72	0.35	2.75	0.28	39.08	2.55	47.34	2.69	13.32	0.88	3.47	0.50
	•					č	ţ		710	1 07	717	37 37	1 10	41 71	1 20	9.77	0.37	2.14	0.16
5	, -	48.96	113.47	37.96	313.50	7.70	U.11	0.00	11.0	1.72	0.17	10.10	01.1	1 / 1 1				; ; ;	500
75	7	45.82	118.80	11.72	133.00	4.20	0.11	5.15	0.21	3.08	0.19	42.17	1.93	49.98	2.08	13.33	0.46	3.11	/7.0
5	1 (7)	38.50	136.18	14.37	90.00	4.13	0.12	5.38	0.17	3.37	0.17	40.93	4.52	48.75	1.86	13.86	10.0	3.25	0.74 0.000
5 K	7	37.03	139.66	15.54	36.00	3.45	0.12	4.51	0.17	2.74	0.12	38.88	1.54	46.34	1.62	12.84	0.47	2.84	0.78
5 K	ינר	35.70	144.41	50.81	40.50	'	'	1	•	ı	•	,	۱	•	١	1	•	•	•
5 K	. .	41 76	126.95	21.62	262.50	3.27	0.18	4.09	0.20	2.47	0.23	36.46	2.19	42.54	2.34	10.92	0.49	2.20	67.0
5 K		44.38	121.50	1.58	86.50	3.92	0.08	4.89	0.19	2.87	0.15	39.67	1.68	47.04	1.84	12.38	0.54	2.95	0.20
2		00.11																	
June 2	28, 1984			i		i c	-			6170	5 64 3	¥ 17 Q	24 J A	Reis	5 P 1 S	Rfl6	Std6	Rf17	Std 7
<u>Site</u>	Fight	<u>Sol Zen</u>	<u>Sol Az</u>	View Zen	View Az		<u>Std 1</u>		<u>510</u> 2	<u>KI1</u> 2	210.2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		202	11 20	1 74	2 60	80
ო		42.39	110.16	66.0	328.00	2.49	0.44	5.55 • 6 •	0.C.U	1/1	14.0	1.7.04 LL 20	7.74 E 07	77.77 72 20	2.70	15,80	181	4 79	060
e	7	43.65	108.20	11.21	144.00	4.60	0.27	6.04	19.0	10.0	0.40	00.00	16.0			22.51			201
e	e	41.00	112.45	9.63	<u> 90.00</u>	3.36	0.31	4.50	0.86	2.61	95.0 61.0	42.26	8.04 5.	10.55	0.0		00.7 7 7 7		5.40
ŝ	4	39.62	114.84	39.88	89.00	3.30	0.36	4.75	0.65	2.69	0.58	36.02	4.81	45.03	07.0	12.07		8 6 8 6	
. ന	ŝ	37.97	117.90	19.22	233.00	2.52	0.41	3.68	0.58	2.04	0.49	36.69	6.20	46.44	6.07	10.44	1.05	۲.7 ۲.7	6°.0
- en	9	35.67	122.68	27.14	48.00	3.44	0.31	4.10	0.59	2.45	0.38	32.11	5.21	39.22	5.43	10.03	ςς.I	3.02	0.47
ი ი	-	33.36	128.23	2.93	14.00	2.45	0.29	3.55	0.43	2.00	0.29	35.77	6.33	44.65	6.31	10.51		2.60	26.0
	Ţ		X F O F F	, , ,	00 916	07 0	0.75	346	1 30	1 74	0.87	34.34	10.57	43.27	11.65	9.63	2.43	2.09	0.00
n		42.39	110.16	1.10	00.026	4-1-7 			0.0	2 27	0.57	46.76	7 5.8	56.43	7 84	13.95	1.83	4.43	06.0
ŝ	7	43.65	108.20	77.11	144.00	4.70	70.0	#				35.41	201	95 PP	6 53	10.02	1.51	2.85	0.91
ŝ	Ś	41.00	112.45	11.24	00.06	05.5 0 5 5	0.40	0.00	0/.0	#7.7			2.00	71 86	3 45	10.41	0.98	3.13	0.49
ი	4	39.62	114.84	38.57	00.68	3.54	0.26	4.40	0.38	7.0U	1.24	07.40	2017	20.1 F) F. O	11-21	>	}	;

	Std 7	0.72	0.50	5	2 .	1.47	0.4 0 1 1 1	00.0	0.20	0.41	0.46	L C	0.45	0.85	0 49		3		¥0.0	0.63
	<u>Rf1</u> 7	2.43	2.84 2.84	00 -	0	00. 4	10.1		70.7	2.88	2.51		2.0.2	3.11	1 87	363	1 70		0.0	2.38
	<u>Std 6</u>	cl.l	1.09	1 73		4.4 0 00	0.05	() () ()	1.40	17.0	0.90	ò	0.76	1.39	0.84	164	70.0	00.0	01.1	1.22
	<u>Rf16</u>	8.93 10.01	10.77	6 50	10 40	10.01	CT-0	71-01		6./4	7.36		90.9	8.30	5.65	9 74	, 19 19	10.0	0.4.0	7.74
	<u>Std 5</u>	4.00 7.21	6.28	1 07		0.00 a 1 a	01.0 A OF			4C:1	4.03		1.09	4.60	2.99	4.17	2 60	2 u 2 i 1 e	01.0	3.27
	<u>Rf15</u>	30./4	44.29	73 53	35 50	23.48	04.07 08.80			20.02	25.41		20.00	32.69	23.36	35.03	24.09	31 00	0.10	29.34
	<u>Std 4</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.74	3 77	с С С С С С С С С С	2 80 2 80		3 53		3.1	3.72	1 67	70.1	3.87	2.51	3.26	1 98	2.12		2.52
	<u>Rf14</u>	2.2	35.39	17 17	77 73	17 77	20.83	18 55		00.01	18.80	01 TC	71.12	24.83	17.10	25.61	17.27	23.89		21.30
	Std 3	0.21	0.71	0.81	136	0.58	0.33	0.91	77.0	07.0	0.35	110		cc. 0	0.28	0.56	0.30	0 49		20.0
	<u>Rf13</u>	40.4 7 30	2.36	2.46	5.36	2.80	5.45	3 11	5.5	40.0	2.92	204		3.06	1.80	3.64	1.92	3.74		7.40
	Std 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.75	1.11	1.48	0.70	0.65	0 98		F ???	0.61	0.43		0.80	0.50	0.72	0.54	0.67		0.04
	<u>8 fi 2</u> 3 24	4 06	3.74	4.17	8.40	4.97	7.88	5.28		02.0	4.75	3 21		4.7/	3.04	5.91	3.18	5.04	000	5.57
	5td 1	0.20	0.39	0.57	0.48	0.25	0.22	0.23	96.0	0.4.0	0.20	10.01		U.JJ	0.19	0.20	0.27	0.21	10,0	17.0
	Rf11	3.12	2.59	2.46	5.13	3.40	5.37	3.25	4 U1		2.69	151		7./1	1.76	2.96	1.53	2.76	1 00	1.00
	View Az 233.00	48.00	14.00	328.00	144.00	270.00	89.00	233.00	48 00		14.00	328.00	00 4 4 1	00.44T	270.00	89.00	233.00	48.00	11.00	77.#T
	<u>View Zen</u> 21.36	25.65	1.22	10.90	0.66	13.10	37.03	14.64	79.87		13.70	13.81	2 34	1.2.0	26.84	21.61	30.76	17.61	336	22.0
	<u>Sol Az</u> 117.90	122.68	128.23	110.16	108.20	112.45	114.84	117.90	122.68		128.23	110.16	108 20	1007	112.45	114.84	117.90	122.68	128 23	140.44
ontinued)	<u>Sol Zen</u> 37.97	35.67	33.36	42.39	43.65	41.00	39.62	37.97	35.67		33.36	42.39	43 65	3.2	41.00	39.62	37.97	35.67	33.36	
, 1984 (a	<u>Fight</u> 5	9	2	1	7	en	4	S	9	r		1	ر د	10	n i	4	ŝ	6	7	•
1 ine 28	ाte 3	ę	ŝ	з	e	e	e	e	e	ſ	'n	¢	"	. .	۰ م	m	e	c.)	en)

,

8.0 Satellite Data Availability

The purpose of the SNF study was to develop the techniques to make the link from biophysical measurements made on the ground to aircraft radiometric measurements and then to scale up to satellite observations. Therefore, satellite image data were acquired for the Superior National Forest study site. These data were selected from all the scenes available from Landsat 1 through 5 and SPOT platforms. Image data substantially contaminated by cloud cover or of poor radiometric quality were not acquired. Of the Landsat scenes, only one Thematic Mapper (TM) scene was acquired; the remainder are Multispectral Scanner (MSS) images. Table 8.1 contains a listing of the scenes which passed inspection and were acquired and archived by Goddard Space Flight Center. Some of the acquired image data have cloud cover in portions of the scene or other problems with the data. These problems and other comments about the images are summarized in Table 8.2.

TABLE 8.1 Satellite Image Data Acquired for the SNF Study Area

This table contains a listing of the satellite image data acquired for the SNF study area in Minnesota. The first column is the date of the satellite overpass; Plat is the platform with Landsat abbreviated LS; Inst is the instrument the data were collected with, MSS is the Multi-Spectral Scanner, TM is the Thematic Mapper and HRV1 and 2 are High-Resolution Visible sensors on SPOT; Sol Zen for solar zenith angle (degrees); Sol Az for solar azimuth angle (degrees); View Zen for view zenith angle (degrees); View Az for view azimuth angle (degrees); Pixels for the number of pixels in a record; Recs for number of image records (or lines); GMT for Greenwich Mean Time when the image was collected.

<u>Date</u>	Plat	Inst	Sol Zen	Sol Az	View Zen	View Az	Pixolo	Dogo	
03-JUL-73	LS-1	MSS	32	1.32	0		2264	<u>Recs</u>	<u>GM I</u>
23-JUN-75	LS-1	MSS	35	125	Õ	0	3204	2983	1628
21-MAY-76	LS-2	MSS	36	131	0	0	3204	2983	1609
05-JUL-76	LS-1	MSS	40	117	0	0	3204	2983	1614
01-AUG-76	LS-2	MSS	39	120	0	0	3264	2983	1544
06-SEP-76	LS-2	MSS	49	130	0	0	3264	2983	1612
24-SEP-76	LS-2	MSS	54	139	0	0	3264	2983	1611
21-IUN-77	LS-2	MSS	36	177	0	0	3264	2983	1610
11-IUN-79	LS-2	MSS	35	122	0	0	3264	2983	1559
05-IUN-82	15-3	MSS	34	127	0	0	3264	2983	1612
01-MAY-83	LS-3	MSS	29	133	0	0	3264	2983	1628
18-IUN-83	LS-4	MCC	30	141	0	0	3264	2983	1628
25-APR-84		TM	32	133	0	0	3264	2983	1628
28-11 INL-84	105		40	139	0	0	6967	5965	1628
21-4110-86	L3-3 ICE	MCC	32	129	0	0	3264	2983	1628
21-AUG-00	L3-3	M55	43	136	0	0	3264	2983	1628
22-JAIN-07	SPUT	HKV2	69	165	2.3	103.4	3000	3000	1719
APRIC 107	SPOT	HRV2	36	164	17.2	105.3	3000	3000	1730
05-MAY-8/	SPOT	HRV2	33	168	27.6	106.8	3000	3000	1738
31-MAY-8/	SPOT	HRV2	27	165	26.2	106.6	3000	3000	1738
28-JUL-87	SPOT	HRV1	31	155	7.3	104.0	3000	3000	1723
08-AUG-87	LS-5	MSS	40	134	0	0	3264	2983	1628 .
13-AUG-87	SPOT	HRV1	35	155	3.6	102.6	3000	3000	1715
14-SEP-87	SPOT	HRV1	46	157	24.1	100.0	3000	3000	1700
24-SEP-87	SPOT	HRV1	50	162	13.8	101.4	3000	3000	1708
04-OCT-87	SPOT	HRV2	53	167	3.3	102.7	3000	3000	1716
23-JUL-90	LS-4	MSS	36	131	0	0	3264	2083	1/10
31-JUL-90	LS-5	MSS	38	130	Ō	Õ.	3264	2003	1020
16-AUG-90	LS-5	MSS	42	134	õ	0	3264	4700	1020
					v	v	0201	2703	1028

Table 8.2 Comments on Satellite Image Data Acquired for the SNF Study Area

This table contains brief descriptions of the quality of the satellite image data described in Table 8.1.

<u>Date</u>	<u>Comments</u>
03-JUL-73	Band 1 and 2 data striped, scattered cumulus in SNF.
23-JUN-75	Band 1 and 2 data striped, SNF clear of cloud cover.
21-MAY-76	Band 1 and 2 data striped, SNF clear of cloud cover.
05-JUL-76	Band 1 and 2 data striped, few cumulus.
01-AUG-76	Band 1 and 2 data striped, few cumulus.
06-SEP-76	Band 1 and 2 data striped, SNF clear of cloud cover.
24-SEP-76	Band 1 and 2 data striped, SNF clear of cloud cover.
21-JUN-77	Band 1 and 2 data striped, SNF clear, SNF cut off to East of Big Lake.
11-JUN-79	Band 1 and 2 data striped, SNF at bottom of scene.
05-JUN-82	Line start error North and West of Ely, SNF cut off to East of Big Moose Lake.
01-MAY-83	SNF clear of cloud cover.
18-JUN-83	SNF clear of cloud cover, image used as reference for GSFC work.
25-APR-84	SNF clear of cloud cover.
28-JUN-84	SNF clear of cloud cover, possible calibration problems.
22-JAN-87	Snow covered, SNF has some cirrus.
25-APR-87	Heavy cirrus cloud cover in northern SNF.
05-MAY-87	Cirrus cloud cover in Western portion of SNF.
31-MAY-87	Heavy cumulus cloud cover throughout SNF.
28-JUL-87	SNF clear of cloud cover.
08-AUG-87	SNF clear of cloud cover.
13-AUG-87	Few scattered cumulus.
14-SEP-87	SNF clear of cloud cover.
24-SEP-87	SNF clear of cloud cover.
04-OCT-87	Some cirrus cloud cover in Eastern SNF.
23-JUL-90	Band 1 and 2 data striped, some cumulus outside SNF.
31-JUL-90	Band 1 and 2 data striped, SNF clear of cloud cover.
16-AUG-90	Band 1 and 2 data striped, some cirrus cloud cover in SNF.

9.0 Superior National Forest Related Publications

Ahlgren, C. E. (1960), Some effects of fire on reproduction and growth of vegetation in northeastern Minnesota, *Ecology* 41 (3): 431-445.

Alban, D. H., D. A.Perala and B. E. Schlaegel (1978), Biomass and nutrient distribution in aspen, pine, and spruce stands on the same soil type in Minnesota, *Can J For Res* 8: 290-299.

Badhwar, G. D., R. B. Macdonald, F. G. Hall and J. G. Carnes (1986), Spectral characterization of biophysical characteristics in a Boreal Forest: Relationship between Thematic Mapper band reflectance and leaf area index for aspen, *IEEE Trans Geosci Rem Sens* GE-24 (3): 322-326.

Badhwar, G. D., R. B. Macdonald and N. C. Menhta (1986a), Satellite-derived leafarea-index maps as input to global carbon cycle models - a hierarchical approach, *Int. J. Remote Sensing* 7 (2): 265-281.

Baker, W. L. (1989), Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota, *Ecology* 70 (1): 23-35.

Botkin, D. B., J. E. Estes, R. M. MacDonald and M. V. Wilson (1984), Studying the Earth's vegetation from space, *BioScience* 34 (8): 508-514.

Botkin, D. B. and K. D. Woods (1985), developing a conceptual framework for remote sensing studies of ecological patterns, *Bull. Ecol. Soc. Am.* 66: 144-145.

Grigal, D. F. and H. F. Arneman (1970), Quantitative relationships among vegetation and soil classifications from northeastern Minnesota, Can. J. Bot. 48: 555-566.

Grigal, D. F. and L. F. Ohmann (1975), Classification, description, and dynamics of upland plant communities within a Minnesota wilderness area, *Ecol. Mono.* 45: 389-407.

Hall, F. G., D. E. Strebel, S. J. Goetz, K. D. Woods and D. B. Botkin (1987), Landscape pattern and successional dynamics in the boreal forest, In: *International Geoscience and Remote Sensing Symposium (IGARSS 87)*, pp. 473-482, Ann Arbor, Michigan.

Hall, F. G., D. E. Strebel and P. J. Sellers (1988), Linking knowledge among spatial and temporal scales: Vegetation, atmosphere, climate and remote sensing, *Landscape Ecology* 2 (1): 3-22.

Hall, F. G., D. E. Strebel, J. E. Nickeson and S. J. Goetz (1988), Satellite tracking of growth and disturbance in Boreal Forest stands, In: *Proceedings of the Third Annual Landscape Ecology Symposium*, Albuquerque, New Mexico.

Hall, F. G., D. E. Strebel, S. J. Goetz and J. E. Nickeson (1989), Landscape scale forest phenology using remote sensing, In: *Proceedings of the Fourth Annual Landscape Ecology Symposium*, Fort Collins, Colorado.

Hall, F. G., D. B. Botkin, D. E. Strebel, K. D. Woods and S. J. Goetz (1991), Large scale patterns of forest succession as determined by remote sensing, *Ecology* 72 (2): 628-640.

Hall, F. G., D. E. Strebel, J. E. Nickeson and S. J. Goetz (1991), Radiometric rectification: Toward a common radiometric response among multi-date, multi-sensor images, *Rem Sens Environ*. 35: 11-27.

Hall, F. G., S. J. Goetz and J. E. Nickeson (1992), Seasonal and interannual variability in photosynthetic activity in the boreal forest of northeast Minnesota: a remote sensing based model, In: *Proceedings of the Seventh Annual Landscape Ecology Symposium*, Corvallis, Oregon.

Hall, F. G., D. E. Strebel, J. E. Nickeson and S. J. Goetz (in preparation), Boreal forest seasonal dynamics derived from satellite remote sensing.

Hall, F. G., K. F. Huemmrich, S. J. Goetz, J. E. Nickeson and D. E. Strebel (in preparation), Remote sensing and canopy modeling of phenological development in a boreal forest.

Hall, F. G., S. J. Goetz, J. E. Nickeson and K. F. Huemmrich (in preparation), Interannual variability of photosynthetic activity in a boreal forest.

Heinselman, M. L. (1973), Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota, Quaternary Res 3: 329-382.

Heinselman, M. L. (1981), Fire and succession in the conifer forests of northern North America, Forest succession: Concepts and applications, Springer-Verlag.

Nordin, J. O. and D. F. Grigal (1976), Vegetation, site, and fire relationships within the area of the Little Sioux Fire, northeastern Minnesota, *Can J For Res* 6: 78-85.

Ohmann, L. F. and D. F. Grigal (1979), Early revegetation and nutrient dynamics following the 1971 Little Sioux forest fire in northeastern Minnesota, *For. Sci. Monograph* 21.

Ohmann, L. F. and D. F. Grigal (1985), Biomass distribution of unmanaged upland forests in Minnesota, Forest Ecology and Management 13: 205-222.

Ohmann, L. F. and R. R. Ream (1971), Wilderness ecology: virgin plant communities of the Boundary Waters Canoe Area, USDA Forest Service Res. Paper NC-63.

Perala, D. A. and D. H. Alban (1982), Biomass, nutrient distribution and litterfall in Populus, Pinus and Picea stands on two different soils in Minnesota, *Plant Soil* 64: 177-192.

Pitts, D. E., G. D. Badhwar and A. H. Feiveson (1988), Comparison of measured Cband scattering coefficients with model predictions as a function of leaf area index and biomass, In: International Geoscience and Remote Sensing Symposium 1988 (IGARSS 88), , pp 1271-1275, Edinburgh, Scotland.

Sando, R. W. and D. A. Haines (1972), Fire weather and behavior of the Little Sioux Fire, North Cent. For. Exp. Stn., Research Paper NC-76.

Shen, S. S., G. D. Badhwar, and J. G. Carnes (1985), Separability of boreal forest species in the Lake Jennette area, Minnesota, *Photog. Eng. and Rem. Sens.* 51 (11): 1775-1783.

Strebel, D. E., S. J. Goetz and F. G. Hall (1987), Atmospheric correction of NS-001 images and extraction of multiple angle reflectance data sets, In: 21st Internation Symposium on Remote Sensing of Environment, pp. 939-948, Ann Arbor, Michigan.

Swain, A. M. (1973), A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments, *Quat Res* 3: 383-396.

Swain, A. M. (1980), Landscape patterns and forest history in the Boundary Waters Canoe Area, Minnesota: a pollen study for Hug Lake, *Ecology* 61: 747-754.

Woods, K. D. and D. B. Botkin (1984), Direct measurement by remote sensing of biomass and leaf area in natural forest stands, *Bull. Ecol. Soc. Am.* 65: 61.

Woods, K. D., D. B. Botkin and A. H. Fieveson (1985), Dimension analysis: new developments in models and statistical treatment, Bull. Ecol. Soc. Am. 66: 297.

Woods, K. D., A. H. Fieveson and D. B. Botkin (1991), Statistical error analysis for biomass density and leaf area index estimation, *Can J For Res* 21:974-989.

Appendix 1 - SNF Data Disk Documentation

In order for the SNF data to be useful to investigators, a floppy disk has been created that contains the data presented in this document. This disk can be ordered from the Pilot Land Data System (PLDS) at Goddard Space Flight Center by contacting:

PLDS User Support Office NASA/Goddard Space Flight Center Greenbelt, MD 20771

Phone: (301) 286-9761 E-mail: pldsuso@pldsg3.gsfc.nasa.gov

All data tables in this document are on the disk. Tables that have been left out are ones which provide inventory information. Data tables are stored as ASCII files with the columns of the data separated by tabs. Each file begins with a description of the data. The files are named for the table number as they appear in this document.

There are two subdirectories on the disk. They contain additional data which was not included in the text document. The directory WEATHER contains daily weather data from International Falls; a full description of the data is in the file WEATHER.TXT. The directory SPECTRA contains leaf and bark spectral reflectance and transmittance data.

Disk contents:

README.TXT - Appendix 1, SNF data disk description
TABLE2.1 - SNF plant species names and abbreviations
TABLE2.2 - SNF study site locations and description
TABLE3.1 - Canopy species
TABLE3.2 - Subcanopy species
TABLE3.3 - Understory composition
TABLE3.4 - Cover by stratum and plot for aspen sites
TABLE3.5 - Statistics for sacrificed aspen trees
TABLE3.6 - Statistics for sacrificed spruce trees
TABLE3.7 - Aspen biophysical parameters
TABLE3.8 - Spruce biophysical parameters
TABLE3.9 - Aspen canopy phenology
TABLE3.10 - Subcanopy phenology
TABLE4.1 - Monthly climatological data
TABLE5.2 - TMS band averages of leaf and bark optical properties
TABLE6.3 - Helicopter MMR data, both 1983 and 1984
TABLE7.1 - Thematic Mapper Simulator data
TABLE8.1 - Satellite image data acquired for the SNF
• -

SPECTRA.DIR - This directory contains in numerical form the spectral reflectance and transmittance data displayed graphically in Section 5. The file SPECTRA.TXT provides a description of the contents of each file. Files in SPECTRA:

A25H29RB.DAT	A25H29RF.DAT	A25H29TB.DAT	A25H29TF.DAT
A25HB1RF.DAT	A25L01RB.DAT	A25L01RF.DAT	A25L01TB.DAT
A25L01TF.DAT	A25LB1RF.DAT	A25M11RB.DAT	A25M11RF.DAT
A25M11TB.DAT	A25M11TF.DAT	A25MB1RF.DAT	A26H21RB.DAT
A26H21RF.DAT	A26H21TB.DAT	A26H21TF.DAT	A26HB1RF.DAT
A26L01RB.DAT	A26L01RF.DAT	A26L01TB.DAT	A26L01TF.DAT
A26LB1RF.DAT	A26M11RB.DAT	A26M11RF.DAT	A26M11TB.DAT
A26M11TF.DAT	A26MB1RF.DAT	A27H21RB.DAT	A27H21RF.DAT
A27H21TB.DAT	A27H21TF.DAT	A27HB1RF.DAT	A27L01RB.DAT
A27L01RF.DAT	A27L01TB.DAT	A27L01TF.DAT	A27LB1RF.DAT
A27M19RB.DAT	A27M19RF.DAT	A27M19TB.DAT	A27M19TF.DAT
A27MB1RF.DAT	AB0B201R.DAT	AB0N2B1R.DAT	AB0N2T1R.DAT
AR0L3B1R.DAT	AR0L3B1T.DAT	AR0L3B2R.DAT	AR0L3B2T.DAT
AR0L3T1R.DAT	AR0L3T1T.DAT	AR0L3T2R.DAT	AR0L3T2T.DAT
AXXH21RB.DAT	AXXH21RF.DAT	AXXH21TB.DAT	AXXH21TF.DAT
AXXL01RB.DAT	AXXL01RF.DAT	AXXL01TB.DAT	AXXL01TF.DAT
AXXM19RB.DAT	AXXM19RF.DAT	AXXM19TB.DAT	AXXM19TF.DAT
BL00201R.DAT	BP0L3B1R.DAT	BP0L3B1T.DAT	BP0L3B2R.DAT
BP0L3B2T.DAT	BP0L3T1R.DAT	BP0L3T1T.DAT	BP0L3T2R.DAT
BP0L3T2T.DAT	CC0L3B1R.DAT	CC0L3B1T.DAT	CC0L3T1R.DAT
CC0L3T1T.DAT	CH0L7T1R.DAT	FH0B201R.DAT	LG0L7T1R.DAT
LL0B201R.DAT	LL0N2B1R.DAT	LL0N2T1R.DAT	LL0N7B1R.DAT
LL0N7T1R.DAT	PB0N2B1R.DAT	PB0N2T1R.DAT	PBLR.DAT
PBLT.DAT	PM0B201R.DAT	PM0N7B1R.DAT	PM0N7T1R.DAT
PM1N2B1R.DAT	PM1N2T1R.DAT	PM2N2B1R.DAT	PM2N2T1R.DAT
PM3N2B1R.DAT	PM3N2T1R.DAT	PM6N7B1R.DAT	PM6N7T1R.DAT
PRLR.DAT	PRLT.DAT	PT0B200R.DAT	PT1L2B1R.DAT
PT1L2B1T.DAT	PT1L2T1R.DAT	PT1L2T1T.DAT	PT1L3B1R.DAT
PT1L3B1T.DAT	PT1L3B2R.DAT	PT1L3B2T.DAT	PT1L3T1R.DAT
PT1L3T1T.DAT	PT1L3T2R.DAT	PT1L3T2T.DAT	PT2L2B1R.DAT
PT2L2B1T.DAT	PT2L2T1R.DAT	PT2L2T1T.DAT	PT3L2B1R.DAT
PT3L2B1T.DAT	PT3L2T1R.DAT	PT3L2T1T.DAT	S60H01R.DAT
S60H01T.DAT	S60H02R.DAT	S60H02T.DAT	S60H03R.DAT
SM00201R.DAT	SM607T1R.DAT	SM707T1R.DAT	SM807T1R.DAT
SPECTRA.TXT	SY2R.DAT	SY2T.DAT	SYYR.DAT
SYYT.DAT			

WEATHER.DIR - This directory contains daily weather data from International Falls, MN for the years 1976 through 1986. The file WEATHER.TXT provides a description of the data files. Files in WEATHER:

3

MET76.DAT	MET77.DAT	MET78.DAT	MET79.DAT
MET80.TXT	MET81.DAT	MET82.DAT	MET83.DAT
MET84.DAT	MET85.DAT	MET86.DAT	WEATHER.TXT

REPORT DOCUMENTATION PAGE		Form Approved OMB No. 0704-0188	
Public reporting burden for this collection of informat	on is estimated to average 1 hour per re	sponse, including the time for review	ring instructions, searching existing data sources, gathering rien estimate or any other aspect of this collection of
and maintaining the data needed, and competing an nformation, including suggestions for reducing this b	urden, to Washington Headquarters Ser	vices, Directorate for Information Op eduction Project (0704-0188), Wash	erations and Reports, 1215 Jefferson Davis Highway, Suite incton, DC 20503.
1 AGENCY USE ONLY (Leave blank) 2. REPORT DATE	3. REPORT TYPE A	ND DATES COVERED
	July 1992	Technical Mem	orandum
4. TITLE AND SUBTITLE Biophysical, Morphological, Canopy Optical Property, and Productivity Data From the Superior National Forest			Code 923
F.G. Hall, K.F. Huemmrich, D.J. J.E. Nickeson and K.D. Woods	E. Strebel, S.J. Goetz,		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
NASA Goddard Space Flight Center Greenbelt, Maryland 20771			92B00092
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and Space Administration Washington, D.C. 20546-0001			TM-104568
11. SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, MI includes description of flog	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or	Nickeson: Hughes STX Corporation, iversity of California at Santa Barbara, rdered from the Pilot Land Data System.
 SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 12a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, Mi includes description of flop STATEMENT	h, S.J. Goetz, and J.E. N D; and K.D. Woods: Un opy disk which can be or	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, edered from the Pilot Land Data System. 12b. DISTRIBUTION CODE
 II. SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 12a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 13. ABSTRACT (Maximum 200 words) This report describes the results sota, during the summers of 198 provide measurements of bioph canopy coverage, overstory and of stand density and age for asp tance data are reported for the n from a helicopter-mounted Barn the NASA C-130 aircraft.	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, Mi includes description of flop STATEMENT of a NASA field experime 33 and 1984. The purpose ysical parameters in the bo understory species compo en and spruce. Leaf, need major boreal forest species. hes Multiband Modular Ra	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or ent conducted in the Sup of the experiment was to real forests. Leaf area i sition data are reported le, and bark high-resolut Canopy bidirectional re diometer (MMR) and th	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, <i>rdered from the Pilot Land Data System.</i> 12b. DISTRIBUTION CODE verior National Forest near Ely, Minne- o examine the use of remote sensing to ndex, biomass, net primary productivity, for about 60 sites, representing a range tion spectral reflectance and transmit- eflectance measurements are provided is Thematic Mapper Simulator (TMS) on
 SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 2a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 3. ABSTRACT (Maximum 200 words This report describes the results sota, during the summers of 198 provide measurements of bioph canopy coverage, overstory and of stand density and age for asp tance data are reported for the n from a helicopter-mounted Barn the NASA C-130 aircraft. 	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, Mi includes description of flop STATEMENT) of a NASA field experime 33 and 1984. The purpose ysical parameters in the bo l understory species compo en and spruce. Leaf, need najor boreal forest species. nes Multiband Modular Ra	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or ent conducted in the Sup of the experiment was to real forests. Leaf area i sition data are reported le, and bark high-resolut Canopy bidirectional re diometer (MMR) and th	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, idered from the Pilot Land Data System. 12b. DISTRIBUTION CODE Perior National Forest near Ely, Minne- o examine the use of remote sensing to ndex, biomass, net primary productivity, for about 60 sites, representing a range tion spectral reflectance and transmit- eflectance measurements are provided the Thematic Mapper Simulator (TMS) on ORIGINAL PAGE OF POOR QUALI
 SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 2a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 ABSTRACT (Maximum 200 words) This report describes the results sota, during the summers of 198 provide measurements of bioph canopy coverage, overstory and of stand density and age for asp tance data are reported for the n from a helicopter-mounted Bart the NASA C-130 aircraft. 	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, Mi includes description of flop STATEMENT of a NASA field experime 33 and 1984. The purpose ysical parameters in the bo understory species compo- en and spruce. Leaf, need najor boreal forest species. nes Multiband Modular Ra	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or ent conducted in the Sup of the experiment was to real forests. Leaf area i sition data are reported le, and bark high-resolut Canopy bidirectional re diometer (MMR) and th	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, idered from the Pilot Land Data System. 12b. DISTRIBUTION CODE Perior National Forest near Ely, Minne- o examine the use of remote sensing to ndex, biomass, net primary productivity, for about 60 sites, representing a range tion spectral reflectance and transmit- eflectance measurements are provided are Thematic Mapper Simulator (TMS) on ORIGINAL PAGE OF POOR QUALIT 15. NUMBER OF PAGES
 SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 2a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 3. ABSTRACT (Maximum 200 words) This report describes the results sota, during the summers of 198 provide measurements of bioph canopy coverage, overstory and of stand density and age for asp tance data are reported for the n from a helicopter-mounted Barr the NASA C-130 aircraft. 14. SUBJECT TERMS Leaf Area Index, Leaf Reflectar Bidirectional Reflectance, Canopia (Content) 	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, MI includes description of flop STATEMENT) of a NASA field experime 33 and 1984. The purpose ysical parameters in the bo l understory species compo en and spruce. Leaf, need najor boreal forest species. nes Multiband Modular Ra	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or ent conducted in the Sup of the experiment was to real forests. Leaf area i sition data are reported le, and bark high-resolut Canopy bidirectional re diometer (MMR) and th	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, dered from the Pilot Land Data System. 12b. DISTRIBUTION CODE Perior National Forest near Ely, Minne- o examine the use of remote sensing to ndex, biomass, net primary productivity, for about 60 sites, representing a range tion spectral reflectance and transmit- eflectance measurements are provided the Thematic Mapper Simulator (TMS) on ORIGINAL PAGE 0F POOR QUALI 15. NUMBER OF PAGES 137 16. PRICE CODE
 SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 2a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 3. ABSTRACT (Maximum 200 words) This report describes the results sota, during the summers of 198 provide measurements of bioph canopy coverage, overstory and of stand density and age for asp tance data are reported for the m from a helicopter-mounted Barn the NASA C-130 aircraft. 14. SUBJECT TERMS Leaf Area Index, Leaf Reflectar Bidirectional Reflectance, Canopia Category Catego	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, Mi includes description of flop STATEMENT of a NASA field experime 33 and 1984. The purpose ysical parameters in the bo understory species compo en and spruce. Leaf, need najor boreal forest species. nes Multiband Modular Ra mode, Canopy Reflectance, F py Structure, Biomass, NP	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or ent conducted in the Sup of the experiment was to real forests. Leaf area i sition data are reported le, and bark high-resolut Canopy bidirectional re diometer (MMR) and th Boreal Forest, P	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, dered from the Pilot Land Data System. 12b. DISTRIBUTION CODE Perior National Forest near Ely, Minne- o examine the use of remote sensing to ndex, biomass, net primary productivity, for about 60 sites, representing a range tion spectral reflectance and transmit- eflectance measurements are provided as Thematic Mapper Simulator (TMS) on ORIGINAL PAGE 0F POOR QUALI 15. NUMBER OF PAGES 137 16. PRICE CODE IFICATION 20. LIMITATION OF ABSTRACT
 SUPPLEMENTARY NOTES F.G. Hall: NASA-GSFC, Green Lanham, MD; D.E. Strebel: VE Santa Barbara, CA. Document 2a. DISTRIBUTION/AVAILABILITY S Unclassified - Unlimited Subject Category 43 ABSTRACT (Maximum 200 words) This report describes the results sota, during the summers of 198 provide measurements of bioph canopy coverage, overstory and of stand density and age for asp tance data are reported for the n from a helicopter-mounted Barn the NASA C-130 aircraft. I4. SUBJECT TERMS Leaf Area Index, Leaf Reflectar Bidirectional Reflectance, Cance I7. SECURITY CLASSIFICATION 18 	belt, MD; K.F. Huemmric RSAR, Inc., Columbia, Mi includes description of flop STATEMENT of a NASA field experime 33 and 1984. The purpose ysical parameters in the bo understory species compo- en and spruce. Leaf, need najor boreal forest species. nes Multiband Modular Ra Multiband Modular Ra	ch, S.J. Goetz, and J.E. N D; and K.D. Woods: Un ppy disk which can be or ent conducted in the Sup of the experiment was to real forests. Leaf area i sition data are reported le, and bark high-resolut Canopy bidirectional re diometer (MMR) and th diometer (MMR) and th Boreal Forest, P	Vickeson: Hughes STX Corporation, iversity of California at Santa Barbara, dered from the Pilot Land Data System. 12b. DISTRIBUTION CODE Perior National Forest near Ely, Minne- o examine the use of remote sensing to ndex, biomass, net primary productivity, for about 60 sites, representing a range tion spectral reflectance and transmit- eflectance measurements are provided as Thematic Mapper Simulator (TMS) on ORIGINAL PAGE 0F POOR QUALI 15. NUMBER OF PAGES 137 16. PRICE CODE IFICATION 20. LIMITATION OF ABSTRACT

 .

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300 Postage and Fees Paid National Aeronautics and Space Administration NASA-451

NASA

POSTMASTER

If Undeliverable (Section 158 Postal Manual) Do Not Return