3,894 research outputs found
Development of unsteady aerodynamic analyses for turbomachinery aeroelastic and aeroacoustic applications
Theoretical analyses and computer codes are being developed for predicting compressible unsteady inviscid and viscous flows through blade rows. Such analyses are needed to determine the impact of unsteady flow phenomena on the structural durability and noise generation characteristics of turbomachinery blading. Emphasis is being placed on developing analyses based on asymptotic representations of unsteady flow phenomena. Thus, flow driven by small-amplitude unsteady excitations in which viscous effects are concentrated in thin layers are being considered. The resulting analyses should apply in many practical situations, lead to a better understanding of the relevent physics, and they will be efficient computationally, and therefore, appropriate for aeroelastic and aeroacoustic design applications. Under the present phase (Task 3), the effort was focused on providing inviscid and viscid prediction capabilities for subsonic unsteady cascade flows
ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model
Improvements on a statistical tropical cyclone (TC) track model in the western North Pacific Ocean are described. The goal of the model is to study the effect of El Nino-Southern Oscillation (ENSO) on East Asian TC landfall. The model is based on the International Best-Track Archive for Climate Stewardship (IBTrACS) database of TC observations for 1945-2007 and employs local regression of TC formation rates and track increments on the Nino-3.4 index and seasonally varying climate parameters. The main improvements are the inclusion of ENSO dependence in the track propagation and accounting for seasonality in both genesis and tracks. A comparison of simulations of the 1945-2007 period with observations concludes that the model updates improve the skill of this model in simulating TCs. Changes in TC genesis and tracks are analyzed separately and cumulatively in simulations of stationary extreme ENSO states. ENSO effects on regional (100-km scale) landfall are attributed to changes in genesis and tracks. The effect of ENSO on genesis is predominantly a shift in genesis location from the southeast in El Nino years to the northwest in La Nina years, resulting in higher landfall rates for the East Asian coast during La Nina. The effect of ENSO on track propagation varies seasonally and spatially. In the peak activity season (July-October), there are significant changes in mean tracks with ENSO. Landfall-rate changes from genesis- and track-ENSO effects in the Philippines cancel out, while coastal segments of Vietnam, China, the Korean Peninsula, and Japan show enhanced La Nina-year increases
SynthETC: A Statistical Model for Severe Winter Storm Hazard on Eastern North America
We develop, evaluate, and apply SynthETC, a statistical-stochastic model of winter extra-tropical cyclones (ETCs) over eastern North America. SynthETC simulates the life cycle of ETCs from formation to termination, and it can be used to estimate the probability of extreme ETC events beyond the historical record. Two modes of climate variability are used as independent covariates: El NioSouthern Oscillation (ENSO) Nino3.4 and the monthly North Atlantic Oscillation (NAO). We use SynthETC to estimate the annual occurrence rate over sites in eastern North America of intense ETC passage in different ENSO and NAO states. Positive NAO is associated with increased rates over the North Atlantic, while negative NAO is associated with decreased rates over the North Atlantic and increased rates over northern Quebec. Positive ENSO is associated with decreased rates over the North Atlantic, Ontario, and the Canadian Maritime, while negative ENSO is associated with increased rates over those regions, as well as the Great Lakes region
On the Impact Angle of Hurricane Sandy's New Jersey Landfall
Hurricane Sandy's track crossed the New Jersey coastline at an angle closer to perpendicular than any previous hurricane in the historic record, one of the factors contributing to recordsetting peak-water levels in parts of New Jersey and New York. To estimate the occurrence rate of Sandy-like tracks, we use a stochastic model built on historical hurricane data from the entire North Atlantic to generate a large sample of synthetic hurricanes. From this synthetic set we calculate that under long-term average climate conditions, a hurricane of Sandy's intensity or greater (category 1+) makes NJ landfall at an angle at least as close to perpendicular as Sandy's at an average annual rate of 0.0014 yr-1 (95% confidence range 0.0007 to 0.0023); i.e., a return period of 714 years (95% confidence range 435 to 1429)
Deeply Virtual Compton Scattering off the Neutron
The present experiment exploits the interference between the deeply virtual Compton scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D(e⃗,e′γ)X cross section measured at Q2=1.9  GeV2 and xB=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to Eq, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced
Google It
Violence prevention is of the utmost concern in some schools. For various reasons, rural schools face a number of challenges that may prevent them from implementing strong, evidence-based violence prevention initiatives. Given that the Internet houses a plethora of cost-free resources on threat assessment and violence prevention in schools, rural educators may consult the internet for information. However, because little is known about the composition and quality of such resources, it is important that they are properly evaluated. As such, the purpose of the present study was to compare existing, free, online school-based threat assessment resources to an evidence-based threat assessment framework to determine how well online resources communicate evidence-based principles. Using component analysis, a total of 11 online resources were evaluated. Overall, the findings from this investigation revealed that the evaluated online threat assessment resources were not as comprehensive as evidence-based guidelines. Keywords: online, prevention, schools, threat assessment, violenc
Recommended from our members
A Global Climatology of Extratropical Transition. Part I: Characteristics across Basins
The authors present a global climatology of tropical cyclones (TCs) that undergo extratropical transition (ET). ET is objectively defined based on a TC’s trajectory through the cyclone phase space (CPS), which is calculated using storm tracks from 1979–2017 best track data and geopotential height fields from reanalysis datasets. Two reanalyses are used and compared for this purpose, the Japanese 55-yr Reanalysis and the ECMWF interim reanalysis. The results are used to study the seasonal and geographical distributions of storms undergoing ET and interbasin differences in the statistics of ET occurrence. About 50% of all TCs in the North Atlantic and the western North Pacific undergo ET. In the Southern Hemisphere, ET fractions range from about 20% in the south Indian Ocean and the Australian region to 45% in the South Pacific. In the majority of ETs, TCs become thermally asymmetric before forming a cold core. However, a substantial fraction of TCs take the reverse pathway, developing a cold core before becoming thermally asymmetric. This pathway is most common in the eastern North Pacific and the North Atlantic. Different ET pathways can be linked to different geographical trajectories and environmental settings. In ETs over warmer sea surface temperatures, TCs tend to lose their thermal symmetry while still maintaining a warm core. Landfalls by TCs undergoing ET occur 3–4 times per year in the North Atlantic and 7–10 times per year in the western North Pacific, while coastal regions in the Australian region are affected once every 1–2 years
Recommended from our members
A Global Climatology of Extratropical Transition. Part II: Statistical Performance of the Cyclone Phase Space
This study analyzes the differences between an objective, automated identification of tropical cyclones (TCs) that undergo extratropical transition (ET), and the designation of ET determined subjectively by human forecasters in best track data in all basins globally. The objective identification of ET is based on the cyclone phase space (CPS), calculated from the Japanese 55-yr Reanalysis (JRA-55) or the ECMWF interim reanalysis (ERA-Interim). The resulting classification into ET storms and non-ET storms underlies the global climatology of ET presented in Part I of this study. Here, the authors investigate how well the CPS classifications agree with those in the best track records calculated from JRA-55 or from ERA-Interim data. According to F1 scores and Matthews correlation coefficients (MCCs), the classification of ET storms in the CPS agrees best with the best track classification in the western North Pacific (MCC > 0.7) and the North Atlantic (MCC > 0.5). In other basins, the correlation between the CPS classification and the best track classification is only slightly higher than that of a random classification. The JRA-55 classification achieves higher performance scores than does the ERA-Interim classification, and the differences are statistically significant in all basins. The lower performance of ERA-Interim is mainly due to a higher false alarm rate, particularly in the eastern North Pacific. Overall, the results show that while the CPS-based classifications are good enough to be useful for many purposes, there is almost certainly room for improvement—in the representation of the storms in reanalyses, in our objective metrics of ET, and in our scientific understanding of the ET process
Relating Ion Release and PH to in Vitro Cell Viability for Gallium-Inclusive Bioactive Glasses
A bioactive glass (BG) in which Ga was substituted for Zn was formulated to investigate whether the ionic form of Ga can elicit effects similar to gallium nitrate. The ion release and pH of BG extracts were evaluated, as well as the in vitro cytocompatibility of extracts in contact with mouse fibroblasts and human osteoblasts. After incubation times of 1 year, the glass (TGa-1) containing the smaller Ga-addition (8 mol%) released the most sodium (Na) (1420 mg/L), silicon (Si) (221 mg/L), and Ga (1295 mg/L), while the glass (TGa-2) containing the larger Ga-addition (16 mol%), exhibited release levels between TGa-1, and the 0 mol% Ga (Control) glass. The pH of all 3 glass extracts steadily increased over time, with maximums observed after 365 days for Control (10.0), TGa-1 (12.2), and TGa-2 (9.7). Cell viability analysis suggested that Ga-release produced toxic effects in L-929 fibroblasts, with less than 3 % viability for both TGa-1 and TGa-2 extracts after 90, 180, and 365 days; however, no significant decrease in MC-3T3 osteoblast viability was observed for TGa-1 extracts after any time period, despite the higher ion release and pH values, and a significant decrease to 51 % viability was only observed for TGa-2 extracts after 365 days. These results suggest that tailoring the release of Ga from BG is not only possible, but also beneficial to the host, thus rendering such glasses useful in bone void-filling applications
- …