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ABSTRACT

This study analyzes the differences between an objective, automated identification of tropical cyclones

(TCs) that undergo extratropical transition (ET), and the designation of ET determined subjectively by

human forecasters in best track data in all basins globally. The objective identification of ET is based on the

cyclone phase space (CPS), calculated from the Japanese 55-yr Reanalysis (JRA-55) or the ECMWF interim

reanalysis (ERA-Interim). The resulting classification into ET storms and non-ET storms underlies the global

climatology of ET presented in Part I of this study. Here, the authors investigate how well the CPS classifi-

cations agree with those in the best track records calculated from JRA-55 or from ERA-Interim data.

According to F1 scores and Matthews correlation coefficients (MCCs), the classification of ET storms in the

CPS agrees best with the best track classification in the western North Pacific (MCC . 0.7) and the North

Atlantic (MCC . 0.5). In other basins, the correlation between the CPS classification and the best track

classification is only slightly higher than that of a random classification. The JRA-55 classification achieves

higher performance scores than does the ERA-Interim classification, and the differences are statistically

significant in all basins. The lower performance of ERA-Interim is mainly due to a higher false alarm rate,

particularly in the eastern North Pacific. Overall, the results show that while the CPS-based classifications are

good enough to be useful for many purposes, there is almost certainly room for improvement—in the rep-

resentation of the storms in reanalyses, in our objective metrics of ET, and in our scientific understanding of

the ET process.

1. Introduction

Extratropical transition (ET) is a process in which a

tropical cyclone (TC) loses its radially symmetric warm-

core structure and becomes an extratropical cyclone

with frontal features and a cold core (Jones et al. 2003;
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Evans et al. 2017). To identify the ET of individual

storms, forecasters in TCwarning centers analyze a wide

range of satellite images, model output, and observa-

tions. In the TC best track archives, a storm that is de-

termined to have completed ET based on this analysis

(and after a poststorm review taking into account all

available data) receives an ‘‘extratropical’’ label.

The exact procedure for determining whether a cy-

clone is considered tropical or extratropical varies

among different TC warning centers. Usually, the de-

cision is based on a combination of satellite imagery,

model forecast fields, and other operational tools such as

the CPS; Fogarty (2010) provides an overview of ET-

related operational forecast practices in many agencies.

Examples of satellite products consulted in ET forecasts

include cloud imagery, wind retrievals from scatter-

ometers, or Advanced Microwave Sounding Unit tem-

perature and moisture soundings. These products are

used to monitor the defining characteristics of ET: the

increasing asymmetry of the cloud pattern, expansion of

the wind field, intrusion of dry air from the midlatitude

trough, and the erosion of the TC’s warm core structure

(Fogarty 2010). Sometimes a ‘‘human dimension’’ may

be included because public perception of a cyclone’s

threat changes when the system is declared extratropical

(Masson 2014). The ‘‘extratropical’’ labels thus repre-

sent a definition of ET that involves subjective expert

judgment. In contrast, the cyclone phase space (CPS)

framework proposed by Hart (2003) can be used to de-

fine ET in a purely objective, automatable way. The CPS

has become widely used and has been applied to opera-

tional analysis and reanalysis data (e.g., Hart 2003;

Kitabatake 2011; Wood and Ritchie 2014) as well as cli-

mate model output (Zarzycki et al. 2017; Liu et al. 2017).

In the first part of this study (Bieli et al. 2019, hereafter

Part I), we used two reanalyses, the Japanese 55-yr

Reanalysis (JRA-55; Kobayashi et al. 2015) and the

European Centre for Medium-Range Weather Fore-

casts’ (ECMWF) interim reanalysis (ERA-Interim; Dee

et al. 2011), to locate TCs in the CPS and study ET in

seven global ocean basins. For comparison, statistics

obtained from the storm type information (i.e., the

‘‘extratropical’’ labels) in the TC best track data were

included as well. The resulting geographical, seasonal,

and temporal characteristics of ET differed between the

basins, but also between the two reanalyses and the best

track labels. This raises the question to what extent the

globally consistent view obtained from a reanalysis is

consistent from one reanalysis dataset to another and

also with forecaster judgment.

Objective definitions for the onset and completion of

ET in the CPS were developed by Evans and Hart

(2003) using 61 Atlantic TCs, all of which had been

declared by the National Hurricane Center (NHC) to

have undergone ET. The study includes a comparison

of the timing of ET in the CPS with that in the best

track data from the NHC. However, Evans and Hart

(2003) did not examine how the classification into ‘‘ET

storms’’ (i.e., storms that undergo ET at some point in

their lifetimes) and ‘‘non-ET storms’’ (i.e., storms that

do not undergo ET) obtained from the CPS compares

to that in the best tracks, when considering a set of TCs

with unknown classification. Applying the CPS to identify

ET in a set of recurving TCs, Kofron et al. (2010) found

that the CPS does not discriminate between ET storms

and non-ET storms.However, their definition ofET is not

based on the best track labels but on a manual examina-

tion of each cyclone’s surface pressure field in reanalysis

data.

The dependence on the dataset used to locate the TCs

in the CPS makes it difficult to isolate the effect of the

methodological differences between the definition of

ET in the CPS and that in the best tracks. An example of

this is the fraction of TCs undergoing ET as presented in

Part I: The classification obtained from ERA-Interim

diagnoses a larger number of storms as undergoing ET

than does the JRA-55 classification. As there is no uni-

versal definition of ET, it is not possible to assess the

correctness of the two classifications in absolute terms.

However, we can evaluate how well the CPS classifica-

tions agree with the best track records, and how that

agreement depends on whether the CPS is calculated

from JRA-55 or from ERA-Interim data. This second

part of the study sets out to answer these questions on a

global basis.

2. Data and methods

a. TC best track and reanalysis datasets

This study is based on the same data as Part I: The

cyclone data are best track datasets from the National

Hurricane Center in the North Atlantic (NAT) and in

the eastern North Pacific (ENP), from the Joint Ty-

phoon Warning Center (JTWC) in the north Indian

Ocean (NI), the Southern Hemisphere (SH), and the

western North Pacific (WNP), and from the Japan Me-

teorological Agency (JMA) in theWNP.Within the SH,

we distinguish the south Indian Ocean (SI), the Aus-

tralian region (AUS), and the South Pacific (SP).

Table 1 provides an overview of the basin acronyms and

best track datasets used in this study.

In Part I, we considered TCs with tropical storm in-

tensity or higher that occurred in the satellite era 1979–

2017. Here, we consider only the years for which the best

track data provide the ‘‘extratropical’’ labels that denote

TCs that have undergone ET, as declared by the
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respective operational meteorological agencies. The

time periods for which these labels are available vary by

basin (Table 1).

We use two reanalysis datasets, the Japanese 55-yr

Reanalysis (1.258 3 1.258) released by the JMA

(Kobayashi et al. 2015) and the ECMWF interim re-

analysis (0.78 3 0.78; Dee et al. 2011). Both reanalyses

apply a four-dimensional variational data assimilation.

A unique feature of the JRA-55 assimilation system is

the use of artificial wind profile retrievals in the vi-

cinity of TCs. In this retrieval scheme, three wind

models are combined to reconstruct 3D wind profile

data at certain locations around the storm center, using

TC information from best track data (Fiorino 2002). In

the assimilation process, the wind profiles are treated

as if they were observations from dropwindsondes

(Hatsushika et al. 2006; Ebita et al. 2011). In contrast,

ERA-Interim does not assimilate any artificial TC

information.

b. Cyclone phase space

We use the cyclone phase space proposed by Hart

(2003) to objectively identify storms that undergo ET.

In the CPS framework, the physical structure of cy-

clones is described based on three parameters: the B

parameter measures the asymmetry in the layer-mean

temperature surrounding the cyclone, and two thermal

wind (2VT) parameters assess whether the cyclone

has a warm or cold core structure in the upper (2VU
T )

and lower (2VL
T ) troposphere (with the convention of

the minus sign, positive values correspond to warm

cores). As in Part I, ET onset is defined here as the first

time a TC is either asymmetric (B . 11) or has a cold

core (2VL
T , 0 and 2VU

T , 0), and ET completion is

defined as the time when the second criterion is met.

This definition allows us to distinguish three pathways

of ET in the CPS: B / VT ETs start when the TC

becomes asymmetric and end with the formation of a

cold core, VT / B ETs start with the formation of a

cold core and end when the TC becomes asymmetric,

and direct ETs become asymmetric and cold core at

the same 6-hourly time step. The reader is referred to

Hart (2003) and Evans and Hart (2003) for a com-

prehensive exposition of the CPS, and to Part I for

details on its application to the definition of ET in this

study.

After computing the CPS parameters along all best

tracks, we applied the CPS criteria to classify each storm

either as an ET storm if it completes the transition

from a tropical to an extratropical system at some point

during its lifetime or as a non-ET storm if it does not.

This resulted in two binary classifications, one from the

CPS parameters computed using JRA-55 data (the

JRA-55 classifier), and one from the CPS parameters

obtained from ERA-Interim data (the ERA-Interim

classifier). A third is given by the storm type information

in the best track archives, whose ‘‘extratropical’’ labels

represent the classification proposed by the specialists at

the operational warning centers.

c. Statistical performance measures

For the purpose of this study, we treat the best track

labels as the ‘‘true’’ classifications of ET storms (see sec-

tion 4 for a discussion of this assumption). Consequently,

the performance of the CPS classifiers is assessed by

comparing them to the ET events in the best track labels,

both by checking the agreement on individual storms as

well as by applying statistical performancemeasures. Two

commonly used statistical performancemetrics for binary

classification algorithms are precision and recall (e.g.,

Ting 2010), which are defined as follows:

precision5
TP

TP1FP
,

recall5
TP

TP1FN
.

TP, FP, and FN are the numbers of true positives, false

positives, and false negatives. Thus, precision is the ratio

of correctly classified positive observations (here: ET

storms) to the total observations classified as positive,

and answers the question, ‘‘Of all storms a CPS classifier

declares to have undergone ET, what fraction actually

did?’’ Recall is the ratio of correctly classified posi-

tive observations to the total positive observations,

TABLE 1. Definitions and acronyms of the ocean basins examined in this study, including their sources of best track datasets, time period

for which ‘‘extratropical’’ labels are available in the best track data, and number of storms in that time period.

Basin Code Source of best tracks Availability of ‘‘extratropical’’ labels No. of storms

North Atlantic NAT NHC 1979–2017 481

Western North Pacific WNP JMA, JTWC 1979–2017, 2004–17 994, 331

Eastern North Pacific ENP NHC 1988–2017 492

North Indian Ocean NI JTWC 2004–17 74

South Indian Ocean SI JTWC 2004–17 117

Australian region AUS JTWC 2004–17 122

South Pacific SP JTWC 2004–17 73
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answering the question ‘‘Of all true ET storms, what

fraction does the CPS classifier label as such?’’ The

harmonic mean of precision and recall is called the F1

score and quantifies the overall performance of the CPS

classifiers in a single number:

F15 2
precision3 recall

precision1 recall
.

The F1 score, precision, and recall all range from 0 to 1,

with higher scores signaling better performances.

The Matthews correlation coefficient (MCC) in-

troduced by Matthews (1975) additionally takes into ac-

count the number of true negatives (TN). It is defined as

MCC5
TP3TN2FP3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP1FP)(TP1FN)(TN1FP)(TN1FN)
p .

The MCC can take on a value between21 and 1, where

1 represents a perfect classification, 0 is equivalent to a

random classification, and 21 indicates total disagree-

ment between classification and observation.

d. Significance test for differences in F1 scores and
MCCs

We use a subsampling method to assess the signifi-

cance of the differences in the performance metrics

(F1 scores and MCCs) achieved by the classifications

obtained from JRA-55 and ERA-Interim. The method

is based on n 5 1000 draws of randomly (without re-

placement) sampled subsets of 5 years. In each draw, the

performance metrics of the two classifiers are calculated

on the storms that occurred in the sampled 5 years, and

the classifier that achieves the higher score is said

to have won the draw. Based on the kJRA-55 times the

JRA-55 classifier wins a draw and the kERAInt 5 n 2
kJRA-55 draws the ERA-Interim classifier wins, we let

k 5 max(kJRA-55, kERAInt) denote the number of draws

won by the better performing classifier, and we define

‘‘success’’ to be the event that the better classifier wins a

draw. Individual draws are treated as Bernoulli trials,

that is, as independent random experiments with two

possible outcomes (‘‘success’’ and ‘‘failure’’), in which

the probability of success is the same every time the

experiment is conducted.

The null hypothesis is that the JRA-55 and ERA-

Interim classifiers are equally likely to win a draw (i.e.,

that the probability of success ps equals 0.5). The

number k of successes in n Bernoulli trials with prob-

ability ps of success is a binomial(n, ps) random vari-

able. Thus, the probability of obtaining at least k

successes is

P(X$ kjp
s
5 0:5)5�

i5n

i5k

�
n

i

�
pi
s(12 p

s
)n2i 5 0:5n �

i5n

i5k

�
n

i

�
.

If this probability is smaller than a significance level of

s5 0.05, we reject the null hypothesis and conclude that

the difference in the performance scores of the JRA-55

and ERA-Interim classifiers is statistically significant.

There is no set rule for determining the appropriate

subset size S (Politis et al. 1999). To account for this, the

subsampling was repeated with subsets of 7 and 10 years.

3. Results

a. Spatial distribution of misclassifications

In our evaluation of the JRA-55 and ERA-Interim

classifiers against the best track labels, we distinguish

between misclassification of positive samples and neg-

ative samples. Misclassified positive samples are false

negatives (i.e., actual ET storms that are not identified in

the CPS), and misclassified negative samples are false

positives (i.e., storms that are classified as ET storms in

the CPS but not in the best track data). Similarly, cor-

rectly classified storms are either true positives or true

negatives. Table 2 gives the complete breakdown for

TABLE 2. Evaluation of the ET events determined in the CPS against those defined in the best track datasets: breakdown into true

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). Values are given as storm counts and as percentages of

the total number of storms. Basins for which the values are based on shorter time periods (2004–17 for the NI, SI, AUS and SP; 1988–2017

for the ENP) are marked with an asterisk.

JRA-55 ERA-Interim

Basin TP TN FP FN TP TN FP FN

NAT 169 (35.1%) 210 (43.7%) 58 (12.1%) 44 (9.1%) 181 (37.6%) 188 (39.1%) 80 (16.6%) 32 (6.7%)

WNP (JMA) 426 (42.9%) 475 (47.8%) 44 (4.4%) 49 (4.9%) 444 (44.7%) 409 (41.1%) 110 (11.1%) 31 (3.1%)

WNP (JTWC)* 96 (29.0%) 168 (50.8%) 20 (6.0%) 47 (14.2%) 102 (30.8%) 139 (42.0%) 49 (14.8%) 41 (12.4%)

ENP 5 (1.0%) 445 (90.4%) 38 (7.7%) 4 (0.8%) 6 (1.2%) 353 (71.7%) 130 (26.4%) 3 (0.6%)

NI* 1 (1.4%) 68 (91.9%) 4 (5.4%) 1 (1.4%) 1 (1.4%) 62 (83.8%) 10 (13.5%) 1 (1.4%)

SI* 16 (13.7%) 75 (64.1%) 11 (9.4%) 15 (12.8%) 14 (12.0%) 67 (57.3%) 19 (16.2%) 17 (14.5%)

AUS* 12 (9.8%) 92 (75.4%) 7 (5.7%) 11 (9.0%) 13 (10.7%) 77 (63.1%) 22 (18.0%) 10 (8.2%)

SP* 18 (24.7%) 30 (41.1%) 10 (13.7%) 15 (20.5%) 17 (23.3%) 23 (31.5%) 17 (23.3%) 16 (21.9%)
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each basin and reveals that in four of seven basins, false

negatives are the dominant source of error in JRA-55,

whereas ERA-Interim has more false positives than

false negatives in all basins. The classification difference

is greatest in the ENP, where ERA-Interim has 130 false

positives, compared to 38 for JRA-55 (this finding will

be analyzed further in section 3b). It is likely that the

wind profile retrievals used in the JRA-55 data assimi-

lation mentioned in section 2a (Hatsushika et al. 2006;

Ebita et al. 2011) enhance the tropical characteristics of

the cyclones in the reanalysis, reducing the number of

false positives while increasing the number of false

negatives.

Table 2 demonstrates that a meaningful comparison

of the CPS classification with the best track classification

has to be based on a storm-by-storm evaluation, not on

ET fractions: Part I showed that in the WNP, the dif-

ference between ERA-Interim’s ET fraction and the ET

fraction in the best tracks is smaller for the JTWC data

than for the JMA data. However, the percentage of

correctly classified cyclones is greater for the JMA data

(90.7% in JRA-55 and 85.8% in ERA-Interim) than for

the JTWC data (79.8% and 72.8%).

Figure 1 presents the spatial distribution of the storm-

by-storm evaluation for theNAT and theWNP, showing

the prevailing correct classifications (true positives and

FIG. 1. Comparison of CPS-based ET detection with the best track labels in the NAT and the WNP, using the

(left) JRA-55 and (right) ERA-Interim classifications, for the time period 1979–2017. Each symbol represents one

storm: green dotsmark the position of ET completion for true positive storms (i.e., storms that were classified as ET

storms in the CPS-based detection as well as in the best track labels), red triangles denote locations where false

positive storms (i.e., storms that were classified as ET storms by the CPS but not by the best track labels) completed

ET, and orange triangles show the ET positions of false negative storms (i.e., storms that were classified as ET

storms by the best track labels but not by the CPS); here, the ET position is defined as the location where the storm

is for the first time considered extratropical in the best track data. Finally, the blue dots mark the locations where

the true negative storms (which did not undergo ET in either of the two classification methods) acquire their

lifetime maximum intensity.
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true negatives, marked by green and blue dots) com-

pared to the misclassified storms (false positives and

false negatives, marked by red and orange triangles).

Themajority of false positives are located north of 208N,

but they can occur as far south as 68N (ERA-Interim,

WNP). We also note the absence of any obvious sys-

tematic differences in the spatial distribution of the

wrongly classified storms between the two reanalyses.

For the SH, the distribution as well as the number of

wrongly classified storms are similar in the results for

JRA-55 (Fig. 2a) and ERA-Interim (not shown). There

is a zonal band of true negatives with false positives at its

southern edge, which implies that the CPS classifiers

tend to declare ET more readily and farther north than

the JTWC. At the same time, though, the CPS classifi-

cation also fails to identify ET events that happen con-

siderably farther south, as indicated by the false

negatives poleward of 308S.

ET in the NI (Fig. 2b) is more difficult to assess due to

the blocking effect of the continental landmass, which

prevents storms from moving far enough north to un-

dergo ET. From 2004 to 2017, the JTWC only labeled

two storms as extratropical. As a result, the evaluation

of ET detection in the NI proved most sensitive to

changes in the threshold values of the CPS parameters;

for example, the JRA-55 classifier misclassifies only a

single storm when increasing the asymmetry threshold

of the B parameter from 11 to 14.

b. A closer look at the ENP

The discrepancy between the ET classifications of

JRA-55 and ERA-Interim in the ENP (Table 2)

motivates a closer inspection of that basin. Figure 3

confirms that the ET detection in JRA-55 matches

the observations better, showing fewer false posi-

tives west of Mexico than does ERA-Interim. Hence,

FIG. 2. Comparison of the CPS-based ET detection (using the JRA-55 classification) with

the best track labels in the (a) SH and (b) NI, for the time period 2004–17. The meaning of the

symbols and colors is the same as in Fig. 1.

FIG. 3. Comparison of CPS-based ET detection with the best track labels in the ENP, using the (left) JRA-55 and

(right) ERA-Interim classifications, for the time period 1988–2017. The meaning of the symbols and colors is the

same as in Fig. 1.
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ERA-Interim’s overestimation of the ET fraction in the

ENP is the result of wrongly classified ET events oc-

curring over the ocean, in the latitude range from about

108 to 308N. This proneness to false positives is also

manifest in boxplots of all 6-hourly CPS parameters

in the ENP (Fig. 4)—compared to their counterparts in

JRA-55, the distributions of all three parameters in

ERA-Interim have larger fractions of their values in the

extratropical range (i.e., B . 11, 2VL
T , 0, 2VU

T , 0).

Of all 96 storms that are false positive in the ERA-

Interim classification but true negative in the JRA-55

classification, 62 (65%) do not begin ET based on the

CPS in JRA-55; that is, they neither exceed the asym-

metry thresholdB5 11 nor exhibit a cold core (2VL
T , 0

and 2VU
T , 0) at any point in their lifetimes. In the re-

maining cases, the JRA-55 classifier diagnoses the onset

of ET, but the condition for the completion of ET is not

satisfied.

Composite fields of geopotential height (Fig. 5) show

the representation of these 96 storms in JRA-55 and

ERA-Interim. The composites are the averages of fields

centered on the best track storm location, which were

extracted in a 208 latitude 3 208 longitude box at the

time when the ERA-Interim classifier declared ET

completion. Both reanalyses feature a cyclone located

in the center. Thus, positional differences between the

locations of the storm centers in the best tracks and

those in ERA-Interim are not the primary reason for

ERA-Interim’s higher false alarm rate. At the 900- and

600-hPa levels, the composites of JRA-55 show a more

radially symmetric and stronger cyclone than those of

ERA-Interim. This is consistent with the lower values of

the B parameter reached in JRA-55, which leads to

fewer storms being diagnosed to have undergone ET.

Weak or dissipating stages at the end of a TC’s life-

time may produce CPS signatures similar to those of ET

storms, which raises the question if there is a specific

type of cyclone in the best track data that tends to be

misdiagnosed as ET in the ERA-Interim classification.

At the time when ET is completed according to the

ERA-Interim classifier, about 45% of the cyclones are

labeled ‘‘tropical storms’’ (TCs with an intensity of 34–

63 kt; 1 kt ’ 0.51m s21) in the NHC best track data.

‘‘Tropical depressions’’ (TCs of intensity , 34kt) and

‘‘lows’’ (lows of any intensity that are neither tropical,

subtropical, nor extratropical cyclones) each account for

about 20% of the cases (not shown). Thus, the false

alarms in ERA-Interim cannot be attributed to a single

type of storm. Instead, they are the result of storms that

exhibit a persistent cold-core structure in ERA-Interim

throughout much of their lifetimes: On average, a cold

core is present at 53% of all time steps along the tracks

of the ET storms, while the asymmetry parameter is only

exceeded at 15% of the time steps. The median CPS

trajectory of the false positives (Fig. S1 in the online

supplemental material) only makes a brief excursion

into the asymmetric range of the B parameter, but is

located in the cold-core region from an early point on.

Evidence for a bias in ERA-Interim toward cold-core

structures in the representation of TCswas also found by

Wood and Ritchie (2014) in their study of ET in

the ENP.

The chance of a fluctuation into theB. 11 parameter

range may be increased because the TCs in the ENP are

the smallest of all basins (Knaff et al. 2014); they are

about a third smaller than TCs in the NAT or the WNP.

For small TCs, the (fixed) radius of 500km used to cal-

culate the CPS parameters may include less symmetric

regions at the outer edge of the storm.

As mentioned in section 2a, JRA-55 uses historical

data to produce artificial dropsonde observations in the

vicinity of TCs, which are then processed like regular

observations (Hatsushika et al. 2006). This is a key dif-

ference between JRA-55 and ERA-Interim, which does

not apply a special TC treatment in its data assimilation

process, and may help to explain the greater strength

FIG. 4. Box-and-whisker plots of all CPS parameters in the ENP, calculated in JRA-55 and ERA-Interim for all

6-hourly TC positions recorded in the best track data. The box extends from the lower to the upper quartile, with a

red line at the median, and the whiskers extend from the 5th to the 95th percentile.
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and higher symmetry of the vortices in the JRA-55

composites. Still, it does not explain why the resulting

difference in classification skill is greater in the ENP

than in the other basins. However, according to the best

track classification, there are only nine ENP ET storms

between 1988 and 2017. This small sample makes it

difficult to analyze whether and how ET may differ in

the ENP compared to other basins; thus, our analysis is

limited to studying the character of false positives in the

reanalysis datasets.

FIG. 5. Composite geopotential height fields (m) of all 96 TCs that are incorrectly labeled as ET storms (i.e., that

are false positive) by the ERA-Interim classifier, but that are correctly labeled as non-ET storms (i.e., that are true

negative) by the JRA-55 classifier. The composites are calculated from storm-centered geopotential height fields

extracted at the time when ERA-Interim declares ET completion, in a 208 latitude 3 208 longitude box at three

pressure levels (top) 900, (middle) 600, and (bottom) 300 hPa, in (left) JRA-55 and (right) ERA-Interim.
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c. ET time

To analyze the timing of ET, probability density

functions (PDFs) of the differences between the best

track ET times (as defined by the operational warning

centers) and the times of ET completion in the CPSwere

calculated using a Gaussian kernel density estimation

(Fig. 6). These PDFs are based on the set of all ET

events that were identified both in the CPS and in the

best track archives (i.e., on the set of all true positives).

The distributions in the NAT are broader than those in

theWNP and the SH, indicating a higher variance in the

declared ET times between the CPS and the NHC than

between the CPS and either the JMA or the JTWC. In

the NAT, ERA-Interim on average declares ET com-

pletion 32 h before the NHC assigns the first ‘‘extra-

tropical’’ label. This is consistent with Evans and Hart

(2003), who examined the ET time of 38 cyclones in the

NAT and found that the time of ET completion di-

agnosed by the CPS in the ECMWF’s 15-yr Reanalysis

(ERA-15; Gibson et al. 1997) occurs on average about

28 h earlier than in the NHC best tracks. In contrast, the

mean difference between the ET time in JRA-55 and

that of the NHC classification is only 10 h. The JRA-55

ET completion times also agree better with the JMA

labels in the WNP than the ERA-Interim completion

times do, while the PDFs of the ET time differences to

the JTWC labels in the SH are almost identical for the

two reanalysis datasets. Based on a t test for the sample

mean and an F test for the sample variance, the inter-

reanalysis differences in the transition time periods are

significant in the NAT and the WNP, but not in the SH.

d. Precision, recall, F1 scores, and Matthews
correlation coefficients

Figure 7a shows the F1 scores of the JRA-55 and

ERA-Interim classifiers. The CPS classification agrees

best with the observations in the WNP and the NAT,

with F1 scores of 0.90 and 0.77, respectively, for JRA-55,

and 0.86 and 0.76, respectively, for ERA-Interim. As

already indicated in Table 2, the classification in the

WNP based on the JTWCbest tracks receives a lower F1

score than that based on the JMAbest tracks. In Part I, it

was shown that the JMA best tracks on average extend

farther northeast than the JTWC best tracks. Thus, the

operational treatment of ET in the JMA and the JTWC

as well as the tracks themselves may contribute to the

differences in the F1 scores.

Compared to the F1 scores in the NAT and the WNP,

the scores in the ENP, the NI and the SH basins are

lower for both reanalysis classifiers, but consistently

higher for the JRA-55 classifier than for the ERA-

Interim classifier.

The decomposition of the F1 scores into precision and

recall (Fig. 7b) shows that the F1 scores in the NAT, the

WNP, and the SH basins are composed of almost equal

values of precision and recall—in other words, the CPS

ET classification is equally good at avoiding false posi-

tives as at avoiding false negatives. The F1 performance

FIG. 6. Probability density functions of the differences between

the best track ET times and the ET completion in the CPS, based

on the ET events from 1979 to 2017 in the NAT and theWNP, and

from 2004 to 2017 in the SH. The vertical lines indicate the means

of the distributions, and the shaded regions represent values within

one standard deviation about the mean. Positive (negative) time

differences indicate that the best track ET time is later than (earlier

than) the ET completion in the CPS.
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in the NI and the ENP is more asymmetric, with a higher

recall than precision. This is likely a result of the scarcity

of ET events in these two basins, which makes it difficult

to identify the rare true ET storms while avoiding

false alarms.

As with the F1 scores, theMCCs (Fig. 8) are highest in

the WNP and the NAT, and the MCCs of JRA-55 ex-

ceed those of ERA-Interim in all basins. The MCCs are

greater than zero in all basins, indicating a better than

random correlation with the best track classification

(recall that the MCC ranges from 21 to 1), although

only by a small margin for the ERA-Interim classifica-

tions in the SP and the ENP. In the SP, the MCC is

considerably lower than in the other two SH basins,

despite similar F1 scores. With that exception, the gen-

eral pattern of the evaluation is robust with respect to

the two performance metrics.

However, it is notable that if we used the proportion

of correct classifications, also termed accuracy, as a

measure of classification skill, the NI would achieve the

highest scores (0.93 in JRA-55 and 0.85 in ERA-

Interim), and the average score of the two reanalyses

in the ENP would be higher than that in the NAT (0.82

compared to 0.78). These results make it clear that ac-

curacy is a misleading performance metric when the two

classes (ET storms and non-ET storms) are of very dif-

ferent sizes. To further illustrate this point, consider a

hypothetical basin where only 0.1% of all storms un-

dergo ET. A ‘‘dummy’’ classifier that, without per-

forming any analysis, assigns each storm to the majority

class (here: non-ET storms) would achieve an accuracy

of 0.99 despite not having any classification skill.

Table 3 presents the results of the significance test

described in section 2d, for the F1 score and the MCC.

FIG. 7. (a) F1 scores assessing the performance of the CPS classifiers. The time period used to

calculate the F1 scores is 1979–2017 for the NAT and theWNP (JMA), 1988–2017 for the ENP,

and 2004–17 for the WNP (JTWC), NI, SI, AUS, and the SP. The results for the WNP are

shown for the best track archives of JMA as well as JTWC. (b) Precision and recall associated

with the F1 scores in (a); scores are marked as circles for JRA-55 and as triangles for ERA-

Interim.
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All differences between the performance scores of the

JRA-55 and the ERA-Interim classifications are signif-

icant. Repeating the test with different subset sizes (S5
7 years and S5 10 years) did not change the significance

of the results. Recall that a high statistical significance

does not imply that the performance difference is large,

but that a (possibly small) difference in classification

skill is consistently present on randomly sampled subsets

of storms.

e. Time series of classification skill

In the NAT and the WNP, the high quality of the best

track datasets and the frequency of ET motivate a look

at how the agreement between the CPS classification

and the best track classification has evolved over time. A

possible reason for changes in that agreement is modi-

fications in the operational procedures at TC warning

centers; for example, since 2005, the NHC has routinely

used model-derived CPS parameters in operational

forecast discussions.

Figure 9 shows time series of F1 scores and MCCs in

these two basins, and Table 4 summarizes some statistics

of these time series. In both basins, the slopes of the

linear regression lines are positive, but only those in the

WNP are statistically significant for both reanalysis

classifiers. In the WNP, the MCCs are almost as high as

the F1 scores, indicating that the CPS classifiers perform

well both in classifying positive samples and in correctly

recognizing negative samples.

The correlations between the time series of JRA-55

and ERA-Interim are high and statistically significant

(Table 4). Thus, the two classifiers do not only have similar

F1 scores andMCCs on the set of all storms (Figs. 7 and 9),

but also on individual 3-yearly subsets of storms.

FIG. 8. MCCs assessing the performance of the CPS-based ET classification. The time

period used to calculate the F1 scores is 1979–2017 for the NAT and the WNP (JMA), 1988–

2017 for the ENP, and 2004–17 for theWNP (JTWC), NI, SI, AUS, and the SP. The results for

the WNP are shown for the best track archives of JMA as well as JTWC.

TABLE 3. Statistical significance of the differences in F1 scores andMCC, evaluated by repeatedly (n5 1000) choosing a random sample

of 5 yr and calculating the F1 score and MCC of the JRA-55 and ERA-Interim classifiers on the storms that occurred in the sampled 5 yr.

Here, kJRA-55 (kERAInt) is the number of times the JRA-55 (ERA-Interim) classifier achieves a higher performance score, and

P(X$ kjps 5 0:5) is the probability of obtaining at least k 5 max(kJRA-55, kERAInt) successes in n Bernoulli trials, assuming the null

hypothesis is true, namely that the probability of success ps equals 0.5. Statistically significant values are in bold.

F1 score MCC

kJRA-55 kERAInt P(X$ kjps 5 0:5) kJRA-55 kERAInt P(X$ kjps 5 0:5)

NAT 540 460 0.006 576 424 ,0.001
WNP (JMA) 795 205 ,0.001 815 185 ,0.001

WNP (JTWC) 751 249 ,0.001 929 71 ,0.001

ENP 627 373 ,0.001 589 411 ,0.001
NI 572 428 ,0.001 550 450 ,0.001

SI 802 198 ,0.001 866 134 ,0.001

AUS 686 314 ,0.001 737 263 ,0.001

SP 765 235 ,0.001 881 119 ,0.001
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The introduction of the CPS as an operational tool at

the NHC does not lead to a jump in the F1 scores and

MCCs in the NAT, which may reflect the fact that Evans

and Hart (2003) originally built the CPS diagnostics of

ET on the NHC classifications.

However, the performance of the CPS classifiers has an

upward trend in both basins. Two conceivable reasons are

that the increasing number of observations assimilated

into JRA-55 and ERA-Interim has made the represen-

tation of TCs more accurate over time, or that there have

been changes in the operational practices and attention

dedicated to the ET designation at the warning centers.

4. Discussion

The fact that the JRA-55 classifier agrees better with

the observed ETs recorded in the best track datasets

than the ERA-Interim classifier is consistent with the

study by Murakami (2014), in which JRA-55 comes out

ahead in an evaluation of the representation of TCs in

six reanalyses. As mentioned in section 3b, the high rate

of false positives we found in the ENP is consistent with

Wood and Ritchie (2014), who noted in their study of

ET in the ENP that ERA-Interim has a bias toward

cold-core values in the 900–600-hPa layer compared

FIG. 9. Time series of (top) F1 scores and (bottom) MCCs in the (left) NAT and (right) WNP, for JRA-55 and

ERA-Interim. Each data point represents the classification performance calculated on a 3-yr period. The dashed

lines are the linear regression best fits to the time series.

TABLE 4. Statistics of the time series of F1 scores andMCCs: sample mean and standard deviation (JRA-55, ERA-Interim), p values of

the slope of the linear regression lines (JRA-55, ERA-Interim), Pearson correlation coefficient R between the JRA-55 and the ERA-

Interim time series, and p value of that correlation coefficient. Statistically significant values are in bold.

Basin Mean Std dev p value of slope R p value of R

F1 score (1979–2017)

NAT 0.75, 0.75 0.08, 0.07 0.022, 0.356 0.74 0.004

WNP 0.90, 0.86 0.05, 0.05 0.003, 0.029 0.73 0.004

MCC (1979–2017)

NAT 0.55, 0.53 0.14, 0.13 0.006, 0.105 0.76 0.003

WNP 0.81, 0.73 0.10, 0.12 0.005, 0.018 0.78 0.002
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with both JRA-55 and the final operational global

analysis (FNL) data from the Global Forecast System.

However, deficiencies in the representation of TCs are

by no means limited to ERA-Interim but are a well-

known issue of reanalyses (including JRA-55; e.g.,

Schenkel and Hart 2012; Murakami 2014; Hodges et al.

2017) and climate model output (e.g., Randall et al.

2007; Camargo and Wing 2016) in general.

The most prominent problem associated with TCs

in reanalyses is the substantial underestimation of the

storm intensities. However, the CPS parameters are

based on relative comparisons (layer thickness left

and right of the storm for B, and vertical profiles of DZ
for thermal wind parameters) and do not depend in

any direct way on storm intensity. This offers the hope

that the threshold parameters used to detect ET may

not have to be adjusted to the increasing resolu-

tion and stronger intensities of cyclones in future

reanalyses.

Of course, the performance evaluation of the CPS

classifiers presented in this study hinges on the quality of

the best track data, in particular on the labels indicating

the tropical or extratropical nature of each cyclone.

Even though the best tracks are the most accurate and

comprehensive archives of historical TC data available,

they are still prone to considerable uncertainty, espe-

cially the components that are derived from a fore-

caster’s subjective judgment (e.g., Landsea and Franklin

2013). In addition, there may be inhomogeneities in

the data quality due to agencies putting less effort into

the classification of transitioning storms or stopping the

tracking earlier in basins where ET storms do not pose a

threat to land.

Given these limitations, it is clear that assessing the

CPS classifiers against the best track labels cannot in

all cases be interpreted as a comparison with the

‘‘true’’ classification. Put simply, when the labels are

wrong, high performance scores do not indicate good

classification skill, and vice versa. However, the time

series of best track ET fractions shown in Part I did not

reveal any statistically significant trends at the 0.05

significance level that were robust between the two

reanalyses, and neither did time series of the magni-

tude of the difference between the CPS-based frac-

tions and the best track labels (not shown). Trends

were also absent in time series of the annual mean

latitude of storm track end points (not shown). Taken

together, these results indicate that operational pro-

cedures in the tracking and characterization of cy-

clones have been fairly consistent in the time period

1979–2017, which provides some reassuring evidence

that the best track labels can to a reasonable approx-

imation be assumed to represent the ‘‘ET truth.’’ In

basins where that assumption is less valid, it still

provides a means to examine differences in the ET

classifications of the two reanalysis datasets, but there

is limited value in interpreting the observed differ-

ences in terms of classification skill.

5. Summary and concluding remarks

In this study, we analyze the statistical performance

of a global classification of tropical cyclones (TCs) that

undergo extratropical transition (ET). The classification

is used in Part I of this study for an examination of the

geographical, seasonal, and temporal characteristics of

ET in seven ocean basins. Here, we have investigated

how well the ET storms defined in the CPS agree with

those defined in the best track records, and how that

agreement depends on whether the CPS is calculated

from JRA-55 or from ERA-Interim data. At the core of

this evaluation is the binary classification into ET storms

(TCs that undergo ET at some point in their lifetimes)

and non-ET storms (TCs that do not undergo ET) ob-

tained from the CPS analysis using JRA-55 data (the

JRA-55 classifier) and ERA-Interim data (the ERA-

Interim classifier).

Our results can be summarized as follows:

d According to the F1 score and the Matthews correla-

tion coefficient (MCC), two performance metrics that

balance classification sensitivity and specificity, the

CPS classification agrees best with the best track

classification in the western North Pacific (MCC .
0.7) and the North Atlantic (MCC . 0.5).

d The correlations between the CPS classification and

the best track classification are considerably weaker in

the other basins. In the South Pacific and the eastern

North Pacific, the MCC of the ERA-Interim classifi-

cation is only slightly higher than that of a random

classification.
d The JRA-55 classifier achieves higher performance

scores than does the ERA-Interim classifier. The

differences are statistically significant in all basins.
d The lower performance of ERA-Interim is mainly due

to a higher false alarm rate, which is especially pro-

nounced in the eastern North Pacific. The false

positives in the eastern North Pacific are the result

of a bias toward cold-core structures in the represen-

tation of TCs in ERA-Interim.
d On average, ET completion in the North Atlantic and

the western North Pacific occurs earlier in ERA-

Interim than in JRA-55, but almost simultaneously

in the Southern Hemisphere.
d In the North Atlantic and the western North Pacific,

the agreement between the CPS classification and the
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best track classification (as measured by the MCC and

the F1 score) has increased from 1979 to 2017, but only

the trend in the western North Pacific is statistically

significant for both the JRA-55 and the ERA-Interim

classifier.

Our results show that the CPS computed from re-

analysis data can be used to provide a globally consistent

dataset that, while by no means in perfect agreement

with the diagnoses of ET produced by forecasters, are

nonetheless close enough—especially in the basins

where ET is most common—to be usable for the pur-

poses of some kinds of climatological studies, as long as

the limitations are understood. At the same time, im-

provement is clearly possible. While we are not certain,

it seems plausible that we obtain higher performance

scores with JRA-55 than ERA-Interim here due to

JRA-55’s special procedures to initialize TCs; this sug-

gests that further improvement in the representation of

TCs in reanalysis datasets—whether through higher

resolution, improved physics, data assimilation, or other

TC-specific initialization procedures—might yield fur-

ther improvements. The CPS itself is also an imperfect

measure, and exploration of other objective metrics of

ET is warranted, as also suggested by Evans et al. (2017).

Since diagnosing ET is in some sense a problem in pat-

tern recognition, machine learning or other advanced

statistical approaches might be beneficial; we are explor-

ing a small subset of such methodologies and will report

on this in due course.

It is also possible that even the forecaster-generated

best track datasets we take here as ground truth are

themselves imperfect indicators of ET, and perhaps

even that in some cases there might be fundamental

scientific uncertainty (i.e., not simply a consequence of

inadequate data) as to whether a storm should be

considered tropical or extratropical at a given mo-

ment, or even whether a binary classification is ade-

quate to describe what might be better thought of as a

gradual transition process (Beven 2008, 2012). In cases

where different metrics of ET (including CPS from

different reanalyses and/or best track datasets) yield

strongly different results, in-depth case studies to ex-

amine physical mechanisms could be valuable, and

could add to our fundamental understanding of the ET

process.
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