1,787 research outputs found
Formation of superconducting yttrium barium copper oxide using sulphur-containing templates
The formation of yttrium barium copper oxide (YBCO) via biotemplated routes is often plagued by unwanted stable intermediates, some of which arise from the template itself. Here we describe a method which allows sulphur-containing templates, such as proteins, to form superconducting YBCO which would have hitherto resulted in non-superconducting sulphated phases
Feasible combinatorial matrix theory
We show that the well-known Konig's Min-Max Theorem (KMM), a fundamental
result in combinatorial matrix theory, can be proven in the first order theory
\LA with induction restricted to formulas. This is an
improvement over the standard textbook proof of KMM which requires
induction, and hence does not yield feasible proofs --- while our new approach
does. \LA is a weak theory that essentially captures the ring properties of
matrices; however, equipped with induction \LA is capable of
proving KMM, and a host of other combinatorial properties such as Menger's,
Hall's and Dilworth's Theorems. Therefore, our result formalizes Min-Max type
of reasoning within a feasible framework
Riverine Discharge and Phytoplankton Biomass Control Dissolved and Particulate Organic Matter Dynamics over Spatial and Temporal Scales in the Neuse River Estuary, North Carolina
Estuaries function as important transporters, transformers, and producers of organic matter (OM). Along the freshwater to saltwater gradient, the composition of OM is influenced by physical and biogeochemical processes that change spatially and temporally, making it difficult to constrain OM in these ecosystems. In addition, many of the environmental parameters (temperature, precipitation, riverine discharge) controlling OM are expected to change due to climate change. To better understand the environmental drivers of OM quantity (concentration) and quality (absorbance, fluorescence), we assessed both dissolved OM (DOM) and particulate OM (POM) spatially, along the freshwater to saltwater gradient and temporally, for a full year. We found seasonal differences in salinity throughout the estuary due to elevated riverine discharge during the late fall to early spring, with corresponding changes to OM quantity and quality. Using redundancy analysis, we found DOM covaried with salinity (adjusted r2 = 0.35, 0.41 for surface and bottom), indicating terrestrial sources of DOM in riverine discharge were the dominant DOM sources throughout the estuary, while POM covaried with environmental indictors of terrestrial sources (turbidity, adjusted r2 = 0.16, 0.23 for surface and bottom) as well as phytoplankton biomass (chlorophyll-a, adjusted r2 = 0.25, 0.14 for surface and bottom). Responses in OM quantity and quality observed during the period of elevated discharge were similar to studies assessing OM quality following extreme storm events suggesting that regional changes in precipitation, as predicted by climate change, will be as important in changing the estuarine OM pool as episodic storm events in the future
Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate
We report on the experimental observation of vortex formation and production
of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an
external oscillatory perturbation. The oscillatory perturbations start by
exciting quadrupolar and scissors modes of the condensate. Then regular
vortices are observed finally evolving to a vortex tangle configuration. The
vortex tangle is a signature of the presence of a turbulent regime in the
cloud. We also show that this turbulent cloud has suppression of the aspect
ratio inversion typically observed in quantum degenerate bosonic gases during
free expansion.Comment: to appear in JLTP - QFS 200
Geospatial analysis and living urban geometry
This essay outlines how to incorporate morphological rules within the exigencies of our technological age. We propose using the current evolution of GIS (Geographical Information Systems) technologies beyond their original representational domain, towards predictive and dynamic spatial models that help in constructing the new discipline of "urban seeding". We condemn the high-rise tower block as an unsuitable typology for a living city, and propose to re-establish human-scale urban fabric that resembles the traditional city. Pedestrian presence, density, and movement all reveal that open space between modernist buildings is not urban at all, but neither is the open space found in today's sprawling suburbs. True urban space contains and encourages pedestrian interactions, and has to be designed and built according to specific rules. The opposition between traditional self-organized versus modernist planned cities challenges the very core of the urban planning discipline. Planning has to be re-framed from being a tool creating a fixed future to become a visionary adaptive tool of dynamic states in evolution
Experimental Constraints on Heavy Fermions in Higgsless Models
Using an effective Lagrangian approach we analyze a generic Higgsless model
with composite heavy fermions, transforming as SU(2)_{L+R} Doublets. Assuming
that the Standard Model fermions acquire mass through mixing with the new heavy
fermions, we constrain the free parameters of the effective Lagrangian studying
Flavour Changing Neutral Current processes. In so doing we obtain bounds that
can be applied to a wide range of models characterized by the same fermion
mixing hypothesis.Comment: 23 pages, 10 figure
- …