2,730 research outputs found

    Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    Get PDF
    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings

    NASA HUNCH Hardware

    Get PDF
    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production

    Shear History Extensional Rheology Experiment: A Proposed ISS Experiment

    Get PDF
    The Shear History Extensional Rheology Experiment (SHERE) is a proposed International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. Collectively referred to as Boger fluids, these polymer solutions have become a popular choice for rheological studies of non-Newtonian fluids and are the non-Newtonian fluid used in this experiment. The SHERE hardware consists of the Rheometer, Camera Arm, Interface Box, Cabling, Keyboard, Tool Box, Fluid Modules, and Stowage Tray. Each component will be described in detail in this paper. In the area of space exploration, the development of in-situ fabrication and repair technology represents a critical element in evolution of autonomous exploration capability. SHERE has the capability to provide data for engineering design tools needed for polymer parts manufacturing systems to ensure their rheological properties have not been impacted in the variable gravity environment and this will be briefly addressed

    Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    Get PDF
    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel

    Case Notes

    Get PDF

    Preliminary Findings from the SHERE ISS Experiment

    Get PDF
    The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed

    Student Design Challenges in Capillary Flow

    Get PDF
    For some grade 8-12 students, capillary flow has bridged the gap between the classroom and research facility, from normal gravity to microgravity. In the past four years, NASA and the Portland State University (PSU) have jointly challenged students to design test cells, using Computer-Aided Design (CAD), to study capillary action in microgravity as PSU has done on the International Space Station (ISS). Using the student-submitted CAD drawings, the test cells were manufactured by PSU and tested in their 2.1-second drop tower. The microgravity results were made available online for student analysis and reporting. Over 100 such experiments have been conducted, where there has been participation from 15 states plus a German school for the children of U.S. military personnel. In 2016, a related NASA challenge was held in partnership with the ASGSR, again, based on the research conducted by PSU. In this challenge, grade 9-12 students designed and built devices using capillary action to launch droplets as far as possible in NASAs 2.2 Second Drop Tower. Example results will be presented by students at this conference. The challenges engage students in ISS science and technology and can inspire them to pursue technical careers

    Evolving Regulation of Corporate Governance and the Implications for D&O Liability: The United States and Australia

    Get PDF
    This Article compares the modern corporate regulatory environments in the United States and Australia, including an analysis of the climate for Directors & Officers (D & O) liability coverage. Comparing these regulations across two large markets with similar historical bases for assessing director and officer liability allows us to explore which reforms may be more effective as new scandals emerge

    Design and Development of the Observation and Analysis of Smectic Islands in Space Experiment

    Get PDF
    The primary objective of Observation and Analysis of Smectic Islands in Space (OASIS) experiment is to exploit the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physic

    In Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration

    Get PDF
    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are continuing to evaluate current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, while many technologies offer promising applications, these technologies must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and non-destructive evaluation W E ) of common life support elements. As an overview of the ISFR Element, this paper will address rapid prototyping technologies, their applications, challenges, and near term advancements. This paper will also discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Overcoming the challenges of ISFR development will provide the Exploration initiative with state of the art technologies that reduce risk, and enhance supportability
    • …
    corecore