5,962 research outputs found

    Radiation environment and shielding for early manned Mars missions

    Get PDF
    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding

    Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound

    Full text link
    Increases in the spatial scale and intensity of activities that produce marine anthropogenic sound highlight the importance of understanding the impacts and effects of sound on threatened species such as marine turtles. Marine turtles detect and behaviorally respond to low-frequency sounds, however few studies have directly examined their behavioral responses to specific types or intensities of anthropogenic or natural sounds. Recent advances in the development of bio-logging tools, which combine acoustic and fine-scale movement measurements, have allowed for evaluations of animal responses to sound. Here, we describe these tools and present a case study demonstrating the potential application of a newly developed technology (ROTAG, Loggerhead Instruments, Inc.) to examine behavioral responses of freely swimming marine turtles to sound. The ROTAG incorporates a three-axis accelerometer, gyroscope, and magnetometer to record the turtle\u27s pitch, roll, and heading; a pressure sensor to record turtle depth; a hydrophone to record the turtle\u27s received underwater acoustic sound field; a temperature gauge; and two VHF radio telemetry transmitters and antennas for tag and turtle tracking. Tags can be programmed to automatically release via a timed corrodible link several hours or days after deployment. We describe an example of the data collected with these tags and present a case study of a successful ROTAG deployment on a juvenile green turtle (Chelonia mydas) in the Paranaguá Estuary Complex, Brazil. The tag was deployed for 221 min, during which several vessels passed closely (\u3c2 km) by the turtle. The concurrent movement and acoustic data collected by the ROTAG were examined during these times to determine if the turtle responded to these anthropogenic sound sources. While fine-scale behavioral responses were not apparent (second-by-second), the turtle did appear to perform dives during which it remained still on or near the sea floor during several of the vessel passes. This case study provides proof of concept that ROTAGs can successfully be applied to free-ranging marine turtles to examine their behavioral response to sound. Finally, we discuss the broad applications that these tools have to study the fine-scale behaviors of marine turtles and highlight their use to aid in marine turtle conservation and management

    Strong unitary and overlap uncertainty relations: theory and experiment

    Get PDF
    We derive and experimentally investigate a strong uncertainty relation valid for any nn unitary operators, which implies the standard uncertainty relation as a special case, and which can be written in terms of geometric phases. It is saturated by every pure state of any nn-dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any n+1n+1 pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarisation qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalised geometric phases.Comment: 5 pages of main text, 5 pages of Supplemental Material. Clarifications added in this updated versio

    Intrinsic flexibility of snRNA hairpin loops facilitates protein binding

    Get PDF
    Stem–loop II of U1 snRNA and Stem–loop IV of U2 snRNA typically have 10 or 11 nucleotides in their loops. The fluorescent nucleobase 2-aminopurine was used as a substitute for the adenines in each loop to probe the local and global structures and dynamics of these unusually long loops. Using steady-state and time-resolved fluorescence, we find that, while the bases in the loops are stacked, they are able to undergo significant local motion on the picosecond/nanosecond timescale. In addition, the loops have a global conformational change at low temperatures that occurs on the microsecond timescale, as determined using laser T-jump experiments. Nucleobase and loop motions are present at temperatures far below the melting temperature of the hairpin stem, which may facilitate the conformational change required for specific protein binding to these RNA loops

    Universal geometric approach to uncertainty, entropy and information

    Get PDF
    It is shown that for any ensemble, whether classical or quantum, continuous or discrete, there is only one measure of the "volume" of the ensemble that is compatible with several basic geometric postulates. This volume measure is thus a preferred and universal choice for characterising the inherent spread, dispersion, localisation, etc, of the ensemble. Remarkably, this unique "ensemble volume" is a simple function of the ensemble entropy, and hence provides a new geometric characterisation of the latter quantity. Applications include unified, volume-based derivations of the Holevo and Shannon bounds in quantum and classical information theory; a precise geometric interpretation of thermodynamic entropy for equilibrium ensembles; a geometric derivation of semi-classical uncertainty relations; a new means for defining classical and quantum localization for arbitrary evolution processes; a geometric interpretation of relative entropy; and a new proposed definition for the spot-size of an optical beam. Advantages of the ensemble volume over other measures of localization (root-mean-square deviation, Renyi entropies, and inverse participation ratio) are discussed.Comment: Latex, 38 pages + 2 figures; p(\alpha)->1/|T| in Eq. (72) [Eq. (A10) of published version

    RCS043938-2904.9: A New Rich Cluster of Galaxies at z=0.951

    Full text link
    We present deep I, J_s, K_s imaging and optical spectroscopy of the newly discovered Red-Sequence Cluster Survey cluster RCS043938-2904.9. This cluster, drawn from an extensive preliminary list, was selected for detailed study on the basis of its apparent optical richness. Spectroscopy of 11 members places the cluster at z=0.951 +- 0.006, and confirms the photometric redshift estimate from the (R-z) color-magnitude diagram. Analysis of the infrared imaging data demonstrates that the cluster is extremely rich, with excess counts in the Ks-band exceeding the expected background counts by 9 sigma. The properties of the galaxies in RCS043938-2904.9 are consistent with those seen in other clusters at similar redshifts. Specifically, the red-sequence color, slope and scatter, and the size-magnitude relation of these galaxies are all consistent with that seen in the few other high redshift clusters known, and indeed are consistent with appropriately evolved properties of local cluster galaxies. The apparent consistency of these systems implies that the rich, high-redshift RCS clusters are directly comparable to the few other systems known at z ~ 1, most of which have been selected on the basis of X-ray emission.Comment: 12 pages, 1 color figure. Accepted for publication on The ApJ Letter
    • …
    corecore