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We derive and experimentally investigate a strong uncertainty relation valid for any n unitary operators,
which implies the standard uncertainty relation and others as special cases, and which can be written
in terms of geometric phases. It is saturated by every pure state of any n-dimensional quantum system,
generates a tight overlap uncertainty relation for the transition probabilities of any nþ 1 pure states, and
gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations
experimentally for photonic polarization qubits, including the minimum uncertainty states of the overlap
uncertainty relation, via interferometric measurements of generalized geometric phases.
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Introduction.—Uncertainty relations are one of the most
important foundations of physics, defining the limits on
what is possible in a quantum world. Their implications
range from bounds in quantummetrology [1,2], through the
security of quantum cryptographic schemes [3,4], and to
the measurement and control of deeply quantum systems
[5]. We present a very powerful, yet simple, uncertainty
relation for the reversible transformations of a quantum
system (represented by unitary operators), which unifies,
generalizes, and significantly strengthens previous results.
For example, our unitary uncertainty relation for n oper-
ators (i) is saturated by every pure state of an n-dimensional
Hilbert space (and by all pure qubit states), (ii) is stronger
than, and can be used to derive, the standard Heisenberg
and Robertson-Schrödinger uncertainty relations [6,7] and
various others in the literature [8–13], (iii) leads to an upper
bound for the out-of-time-order correlator—of strong
interest in quantum thermalization, chaos, and information
scrambling, for both many-body and black-hole physics
[14–19], and (iv) generates a strong inequality for the
transition probabilities connecting any nþ 1 pure states.
Our relation can therefore be viewed as an “ur”-uncertainty
relation, which unifies a number of seemingly disparate
quantum concepts. We experimentally investigate this
uncertainty relation, and its implications for transition
probabilities, via robust interferometric measurements of
generalized geometric phases [20–24] on polarization
qubits (extendable to any n unitaries).
Unitary uncertainty relation.—For n unitary operators

U1; U2;…; Un and quantum state ρ, define U0 ¼ I and
vðjÞ ¼ Ujρ

1=2. For any given set of nþ 1 vectors fvðjÞg
with inner product ð·; ·Þ, the corresponding Gram matrix G,

with coefficients Gjk ¼ ðvðjÞ; vðkÞÞ, is positive semidefinite
[25]. Hence, choosing the inner product ðA;BÞ ¼ Tr½A†B�
on the vector space of linear operators, one has the unitary
uncertainty relation (UUR)

detG ≥ 0; Gjk ≔ Tr½ρU†
jUk� ¼ hU†

jUki ð1Þ
(and, more generally, the stronger relation G ≥ 0). We note
that a similar method was used by Robertson to obtain an
uncertainty relation for n Hermitian operators and a pure
state [26]. For n ¼ 2, the UUR reduces to

VarUVarV ≥ jhU†Vi − hU†ihVij2 ð2Þ
for two unitary operators U and V, recently obtained
elsewhere by less simple means [12,13], where the variance
of unitary operator U is defined by VarU ≔ 1 − jhUij2. As
well as a direct measure of uncertainty, vanishing only for
eigenstates of U [27], VarU quantifies the disturbance of
pure states by U: it reaches its minimum value of 0 for a
nondisturbing rephasing of the state, Ujψi ¼ expðiθÞjϕi,
and its maximum value of 1 for the maximally disturbing
case that U transforms jψi to an orthogonal state.
The n ¼ 3 case is discussed in the Supplemental

Material [28]. It is further shown there that expanding
U ¼ eiϵA, V ¼ eiϵB in ϵ in Eq. (2) yields the standard
Robertson-Schrödinger uncertainty relation [6,7]

VarAVarB ≥
1

4
jh½A;B�ij2 þ CovðA; BÞ2; ð3Þ

for two observables represented by Hermitian operators
A and B (with the quantum covariance defined by
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CovðA;BÞ ≔ 1
2
hABþ BAi − hAihBi), and that several

recent uncertainty relations [8–11] can also be obtained
from the UUR in Eq. (1).
To determine the states that saturate the UUR, i.e., its

minimum uncertainty states, note that the determinant of a
Gram matrix vanishes if and only if the vectors vðjÞ are
linearly dependent [25]. For a pure state ρ ¼ jψihψ j, this is
equivalent to linear dependence of jψi; U1jψi;…; Unjψi,
which is always satisfied for the case of a Hilbert space with
dimension d ≤ n. Hence, every pure state is a minimum
uncertainty state for this case, emphasizing the strength of
the UUR. In particular, Eq. (1), and hence Eqs. (2) and (3),
are saturated by all qubit pure states. Conversely, a mixed
qubit state is a minimum uncertainty state of Eq. (2) if
and only if ½U;V� ¼ 0, i.e., if and only if U and V
correspond to rotations about the same axis of the Bloch
sphere (see Supplemental Material [28]).
The UUR is invariant under Uj → eiϕjUj [even though

Gjk in Eq. (1) is not], i.e., under physically equivalent
unitaries [28]. Indeed, for a pure state jψi, Eq. (1) can be
rewritten in terms of the Bargmann projective invariants
Bj1…jr ≔ Tr½jψ j1ihψ j1 j…jψ jrihψ jr j�, invariant under
rephasings jψ jri → eiϕjr jψ jri, where jψ jþ1i ≔ Ujjψi
[21,28] (these invariants are closely related to geometric
phases [24]). For example, Eq. (2) becomes

cosΦ ≥
T12 þ T13 þ T23 − 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T12T13T23

p ; ð4Þ

where Tjk ¼ jhψ jjψkij2 ¼ Bjk is the transition probability
between jψ ji and jψki, and Φ is the phase of the complex
number B123. The saturation of this inequality for all pure
qubit states corresponds to an identity in spherical trigo-
nometry [28,29]. For general mixed states, the UUR can
be tested via the measurement of suitably generalized
Bargmann invariants, as reported below. In particular,
Eq. (2) is equivalent to

cosΦ ≥
jhUij2 þ jhVij2 þ jhU†Vij2 − 1

2jhUihU†VihV†ij ; ð5Þ

generalizing Eq. (4), where Φ is the phase of the gener-
alized Bargmann invariant hUihU†VihV†i [28].
Overlap uncertainty relation.—Overlap uncertainty rela-

tions reflect the nonclassical property that even pure
quantum states typically overlap, important for quantum
state discrimination and quantum metrology [1,2,30,31]
and in SWAP-tests [32] for quantum communication [33].
For example, the overlap between two phase-shifted optical
modes, jψi and e−iNχ jψi, is Tχ ¼ jhψ je−iNχ jψij2 ¼
1 − χ2ðΔNÞ2 þOðχ4Þ, implying that a small overlap,
Tχ ≪ 1, as required to resolve a small phase shift χ,
requires a large photon number uncertainty ΔN ≳ 1=χ.
Our unitary uncertainty relation unifies quantum limits on

state preparation and overlap, by generating a tight overlap
uncertainty relation for any given set of nþ 1 pure states.
For example, noting that cosΦ ≤ 1, Eq. (4) immediately

yields the overlap uncertainty relation (OUR)

T12 þ T13 þ T23 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T12T13T23

p
≤ 1 ð6Þ

for the transition probabilities connecting any three
pure states. This relation is tight, being saturated if and
only if the states lie on a geodesic in Hilbert space, and for
qubits, this corresponds to their Bloch vectors lying on a
great circle [28]. It is also a very strong constraint—
stronger, e.g., than the overlap uncertainty relationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T12

p
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T13

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T23

p
, for the transition prob-

abilities of any three pure states jψ1i, jψ2i, jψ3i, corre-
sponding to the triangle inequality for trace distance
[28,31]. For states jψi, Ujψi, Vjψi, with a fixed U and
V, saturation of the OUR determines the corresponding
minimum uncertainty states fjψig, as investigated exper-
imentally below. More generally, the UUR (1) generates an
overlap uncertainty relation for nþ 1 states, explored
further in the Supplemental Material [28].
Experimental setup.—Our experiment uses polarization

states of single photons and a displaced Sagnac interfer-
ometer with controllable unitary transformations, U in the
transmitted arm and V in the reflected arm (see Fig. 1). We
can determine the value of hU†Vi for an input state ρ by
first noting that the average output photon number is given
by hNiχ ¼ 1

2
½1þ Refe−iχhU†Vig�, where χ is the phase

difference between the two arms. Hence, we can obtain an
interference pattern by varying χ, with associated visibility

VðU;VÞ ≔ hNimax − hNimin

hNimax þ hNimin
¼ jhU†Vij: ð7Þ

The values of jhUij and jhVij are similarly determined from
the corresponding visibilities VðU; IÞ, VðI; VÞ, where I
denotes the identity transformation. Further, the phase of
hU†Vi corresponds to the value of the phase difference χ
that gives a maximum average output photon number (for a
pure input state jψi, this value is the Pancharatnam phase
between Ujψi and Vjψi [20,34]). If χðU;VÞ denotes the
location of the interference maximum relative to some fixed
phase reference value χ0, it follows that the phase of hU†Vi
is given by

arghU†Vi ¼ χðU;VÞ − χðI; IÞ: ð8Þ

Thus, our setup allows us to extract hU†Vi from the
interference pattern via Eqs. (7) and (8). More generally,
this setup allows the Grammatrix coefficientsGjk in Eq. (1)
to be experimentally determined for any set of unitary
transformations U0 ¼ I; U1;…Un and polarization state ρ,
and hence, the testing of the UUR for any n. We note that,
in comparison, a recent qutrit experiment testing a special
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case of the n ¼ 2 UUR requires preparation of a strictly
pure state jψi, prior knowledge of the unitary operators (to
implement both V and V†), and tomographic reconstruction
of jψi, Ujψi, and Vjψi [35].
As shown in Fig. 1, the main component of our setup

is the displaced Sagnac interferometer, which is used to
measure visibilities and phases as above. For the single-
photon source, we use a 410 nm continuous-wave diode
laser to pump an optically nonlinear beta Barium Borate
(BBO) crystal. The degenerate photon pairs generated by
the noncollinear type-I spontaneous parametric down con-
version (SPDC) are collected into optical fibers. The idler
photon heralds the presence of a signal photon. A half-
wave plate (HWP) allows for a range of polarization qubit
states to be encoded on the signal photon, which is then
sent into the interferometer. Each unitary operator, U
and V, is implemented by a combination of HWPs and
quarter-wave plates (QWP), arranged in a group of four:
HWP=QWP=HWP=QWP (Fig. 1), with the QWPs set to
45°, and the HWPs at variable angles α and β. The
condition α ¼ 90° and β ¼ 0° corresponds to implementing
the identity operation. To realize an adjustable phase shift,
a glass element is mounted on a motorized tilt controller
and inserted in one arm of the interferometer. A fixed glass
element is positioned in the other arm in order to keep the
path-length differences to within the coherence length.
Finally, the photons are detected by silicon avalanche
photodiodes.
Results.—The interference fringes in Fig. 2 are obtained

by measuring the photon counts at the output of the
interferometer. The wave plates in one arm of the inter-
ferometer are rotated to produce either the identity oper-
ation I or an operation UðαU; βUÞ specified by αU and βU.

Similarly, VðαV; βVÞ or I can be implemented in the other
arm. The left- and right-hand sides of the UUR in Eq. (5)
are calculated by measuring four interference fringes, as
shown in Fig. 2. We extract the phase and the visibility
of the interference fringes by fitting the data to
A1 þ A2 cos2½12 ðθ − θ0Þ�, where θ ¼ χ − χ0 is the con-
trolled phase shift implemented by the tilted glass element.
The visibility is then given by VðU;VÞ ¼ A2=ð2A1 þ A2Þ,
and χðU;VÞ by θ0. The phase Φ of the generalized
Bargmann invariant hUihU†VihV†i follows via Eq. (8) as

Φ ¼ χðU;VÞ − χðU; IÞ − χðI; VÞ þ χðI; IÞ: ð9Þ

0

4000

0

4000

0

4000

0 1 2 3 4 5 6 7 8
0

4000
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FIG. 2. Interferograms as recorded by measuring coincidence
counts as a function of the applied phase shift. Unitaries U, V, or
I are applied to each arm of the Sagnac interferometer as follows
a) Transmitted: I, Reflected: I. b) Transmitted: U, Reflected: I. c)
Transmitted: I, Reflected: V. d) Transmitted: U, Reflected: V.
The jhU†Vij terms or transition probabilities in the uncertainty
relations can be calculated from the visibilities of the curves via
Eq. (7), and the Bargmann phase via the phase terms in Eq. (9),
each of which is determined from the phase of a fringe pattern.

FIG. 1. Experimental setup for testing the unitary and overlap uncertainty relations. Pairs of single photons are generated via SPDC using
a type-I BBO crystal. The signal photon is prepared in an arbitrary linear polarization state using a Glan-Taylor (GT) prism followed by a
half-wave plate (HWP). After entering a displaced Sagnac interferometer at a 50∶50 nonpolarizing beam splitter (NPBS), the photon
traverses the interferometer in a superposition of the transmitted (red) and reflected (orange) paths. Unitary operators U, V, and I are
implemented using HWPs and quarter-wave plates (QWP). An additional HWP compensates for the birefringent phase upon reflection at
the NPBS. A glass element in one path is tilted to act as a phase shifter, while a fixed element in the other path keeps the path-length
difference to within the coherence length. Two avalanche photodiodes (APDs) detect the signal and idler (heralding) photons.
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Verification of the UUR in Eq. (5) can be seen in Fig. 3.
Here, we fix the input state to be horizontally polarized,
jHi. We vary U and V pairwise in steps such that the full
range of cosΦ is sampled and, at each setting, the tips of
the Bloch vectors for fjHi; UjHi; VjHig form an equi-
lateral spherical triangle. This corresponds to T12 ¼ T23 ¼
T13 in Eq. (4). Saturation of Eq. (4) by pure qubit states
corresponds to the area of the triangle being equal to Φ=2
[22–24,28]). In practice, there are small experimental
imperfections. Although the states have high purity, they
are not completely mixture free, and so Eq. (5) replaces
Eq. (4) as the relevant UUR; also the nominal equilateral
configuration is not exact. Nevertheless, since jhUij2 ≈
jhVij2 ≈ jhU†Vij2, we write the average of these quantities
as T, which forms the x axis in Fig. 3. In the ideal pure
state case for this configuration, T ¼ Tij (∀i ≠ j) and
T12 ¼ jhUij2, etc.
The experimental procedure to test the OUR in Eq. (6)

uses a set of linearly polarized input states of high purity,
and a fixed UðαU ¼ 36°; βU ¼ 0°Þ and VðαV ¼ 0°;
βV ¼ 36°Þ. The transition probabilities in Eq. (6) may be
determined from the measured visibilities in Eq. (7), via
Tjk ¼ jhU†

jUkij2 ¼ VðUj;UkÞ2 for a pure input state. The
results are shown in Fig. 4. The minimum uncertainty states
correspond to the upper bound of unity in Eq. (6). We note
that one of the sources of error in our experiments is the
imperfect calibration and retardation of the wave plates,
which leads to the implemented unitary operations deviat-
ing slightly from the expected settings.
Out-of-time-order correlators.—The UUR may also be

used to obtain a bound for the out-of-time-order correlator
(OTOC), F ¼ hW†

t V†WtVi, for a fixed unitary V and a
time-dependent unitary Wt. The OTOC determines the
disturbance caused by V on a later measurement of W
and, as noted in the Introduction, is of interest in quantum
thermalization, chaos, and information scrambling, both in

many-body and black-hole physics [14–16]. It has only
very recently been experimentally measured for some
systems [17–19].
In particular, the UUR in Eq. (2) implies ð1 − u2Þ

ð1 − v2Þ ≥ ðjhU†Vij − uvÞ2, with u ¼ jhUij, v ¼ jhVij,
yielding

jhU†Vij ≤ uvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u2Þð1 − v2Þ

q
¼ cosðθU − θVÞ;

ð10Þ

with θU ≔ cos−1 jhUij. Replacing U by WtV and V by
VWt then gives the upper bound

jFj ¼ jhW†
t V†WtVij ≤ cosðθVWt

− θWtVÞ ð11Þ

for the modulus of the OTOC, which shows that jFj is a
direct signature of the noncommutativity of V and Wt.
Indeed, using RefFg ≤ jFj yields the lower bound

hj½V;Wt�j2i ¼ 2ð1 − RefFgÞ ≥ 4 sin2
�
θVWt

− θWtV

2

�
;

ð12Þ

where hjAj2i denotes hA†Ai. For polarization qubits, we
note that the values of θVWt

and θWtV could be obtained
from interferometer visibilities corresponding to jhVWtij
and jhWtVij, via Eq. (7), with a time-dependent unitary in
one arm.
Conclusion.—We have presented a strong and very

general unitary uncertainty relation (UUR), which implies
the Robertson-Schrödinger relation and generates a tight
state overlap uncertainty relation. We tested these exper-
imentally using polarization qubit states in an interfero-
metric configuration. This allowed for measurements that
led directly to the quantities in the relation, and directly
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FIG. 3. Verification of the UUR in the form of Eq. (5), and its
saturation by a pure qubit state. Using a fixed input state,U and V
are varied pairwise over a range as described in the text. At each
step, parametrized by the modsquared expectation value T of
the operators, the left-hand (blue triangles) and right-hand (red
circles) sides of the UUR are determined from experimental
measurements. The black line represents the theoretical predic-
tion for saturation of Eq. (5). The errors are calculated from the
standard errors of the fit parameters.
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FIG. 4. Experimental test of the OUR in Eq. (6). The unitary
operators in both arms of the interferometer remain fixed, and we
input a family of states lying in the linear polarization plane. The
green data points represent the left-hand side of Eq. (6). The blue
solid line represents the theoretical curve of the left-hand side of
Eq. (6). Minimum uncertainty states correspond to a value of
unity, which is marked by the black dashed line. The error bars
are calculated from the standard errors of the fit parameters.
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revealed the role of geometric phase in the UUR. We note
that the UUR does not assume or require pure states,
making it a general and powerful tool for real-world
quantum systems.
We expect that the strength of the general UUR in Eq. (1)

will lead to further results that enhance and unify quantum
uncertainty relations. For example, noting that spin-1=2
observables are both Hermitian and unitary, the UUR in
Eq. (2) leads directly to, and hence encompasses, a tight
state-independent qubit uncertainty relation obtained
recently in Refs. [9,10], and it leads to a generalization
of the uncertainty relation for characteristic functions in
Ref. [11] (see Supplemental Material [28]). It would also be
of interest in future work to investigate possible connec-
tions of the UUR with entropic, measurement-disturbance,
and joint-measurement uncertainty relations, to test the
UUR and OUR for higher values of n, and to implement
similar tests of the OTOC bounds in Eqs. (11) and (12)
above.
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