10,939 research outputs found

    An Empirical Model of Inventory Investment by Durable Commodity Intermediaries

    Get PDF
    This paper introduces a new detailed data set of high-frequency observations on inventory investment by a U.S. steel wholesaler. Our analysis of these data leads to six main conclusions: orders and sales are made infrequently; orders are more volatile than sales; order sizes vary considerably; there is substantial high-frequency variation in the firm's sales prices; inventory/sales ratios are unstable; and there are occasional stockouts. We model the firm generically as a durable commodity intermediary that engages in commodity price speculation. We demonstrate that the firm's inventory investment behavior at the product level is well approximated by an optimal trading strategy from the solution to a nonlinear dynamic programming problem with two continuous state variables and one continuous control variable that is subject to frequently binding inequality constraints. We show that the optimal trading strategy is a generalized (S,s) rule. That is, whenever the firm's inventory level q falls below the order threshold s(p) the firm places an order of size S(p) - q in order to attain a target inventory level S(p) satisfying S(p) >= s(p), where p is the current spot price at which the firm can purchase unlimited amounts of the commodity after incurring a fixed order cost K. We show that the (S,s) bands are decreasing functions of p, capturing the basic intuition of commodity price speculation, namely, that it is optimal for the firm to hold higher inventories when the spot price is low than when it is high in order to profit from "buying low and selling high." We simulate a calibrated version of this model and show that the simulated data exhibit the key features of inventory investment we observe in the data.Commodities, inventories, dynamic programming

    Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    Get PDF
    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, Low-Earth-Orbit (LEO) spacecraft missions. The new features of this design, which are not incorporated in state-of-the-art design cells, are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. Six 125 Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they do not have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test at the Naval Weapons Support Center, Crane, IN, under a NASA Lewis Research Center contract. The catalyzed wall wick cells have been cycled for over 19000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900)

    Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells

    Get PDF
    A breakthrough in low earth orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and a real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana, to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There was two failures, however, for the cells containing 31 percent KOH

    Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells. An update

    Get PDF
    Validation testing of the NASA Lewis 125 Ah advanced design individual pressure vessel (IPV) nickel-hydrogen flight cells was conducted. Work consisted of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, an open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells were cycled for over 11,000 cycles with no cell failures in the continuing test. One of the noncatalyzed wall wick cells failed

    A Unified Theory of Matter Genesis: Asymmetric Freeze-In

    Full text link
    We propose a unified theory of dark matter (DM) genesis and baryogenesis. It explains the observed link between the DM density and the baryon density, and is fully testable by a combination of collider experiments and precision tests. Our theory utilises the "thermal freeze-in" mechanism of DM production, generating particle anti-particle asymmetries in decays from visible to hidden sectors. Calculable, linked, asymmetries in baryon number and DM number are produced by the feeble interaction mediating between the two sectors, while the out-of-equilibrium condition necessary for baryogenesis is provided by the different temperatures of the visible and hidden sectors. An illustrative model is presented where the visible sector is the MSSM, with the relevant CP violation arising from phases in the gaugino and Higgsino masses, and both asymmetries are generated at temperatures of order 100 GeV. Experimental signals of this mechanism can be spectacular, including: long-lived metastable states late decaying at the LHC; apparent baryon-number or lepton-number violating signatures associated with these highly displaced vertices; EDM signals correlated with the observed decay lifetimes and within reach of planned experiments; and a prediction for the mass of the dark matter particle that is sensitive to the spectrum of the visible sector and the nature of the electroweak phase transition.Comment: LaTeX, 22 pages, 6 figure

    The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant

    Get PDF
    PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio

    An Empirical Model of Inventory Investment by Durable Commodity Intermediaries

    Get PDF
    This paper introduces a new detailed data set of high-frequency observations on inventory investment by a U.S. steel wholesaler. Our analysis of these data leads to six main conclusions: orders and sales are made infrequently; orders are more volatile than sales; order sizes vary considerably; there is substantial high-frequency variation in the firm’s sales prices; inventory/sales ratios are unstable; and there are occasional stockouts. We model the firm generically as a durable commodity intermediary that engages in commodity price speculation. We demonstrate that the firm’s inventory investment behavior at the product level is well approximated by an optimal trading strategy from the solution to a nonlinear dynamic programming problem with two continuous state variables and one continuous control variable that is subject to frequently binding inequality constraints. We show that the optimal trading strategy is a generalized ( S,s ) rule. That is, whenever the firm’s inventory level q falls below the order threshold s (p) the firm places an order of size S ( p ) - q in order to attain a target inventory level S ( p ) satisfying S ( p ) \u3e s ( p ), where p is the current spot price at which the firm can purchase unlimited amounts of the commodity after incurring a fixed order cost K . We show that the ( S,s ) bands are decreasing functions of p, capturing the basic intuition of commodity price speculation, namely, that it is optimal for the firm to hold higher inventories when the spot price is low than when it is high in order to profit from “buying low and selling high.” We simulate a calibrated version of this model and show that the simulated data exhibit the key features of inventory investment we observe in the data

    Destructive physical analysis results of Ni/H2 cells cycled in LEO regime

    Get PDF
    Six 48-Ah individual pressure vessel (IPV) Ni/H2 cells containing 26 and 31 percent KOH electrolyte were life cycle tested in low Earth orbit. All three cells containing 31 percent KOH failed (3729, 4165, and 11,355 cycles), while those with 26 percent KOH were cycled over 14,000 times in the continuing test. Destructive physical analysis (DPA) of the failed cells included visual inspections, measurements of electrode thickness, scanning electron microscopy, chemical analysis, and measurements of nickel electrode capacity in an electrolyte flooded cell. The cycling failure was due to a decrease of nickel electrode capacity. As possible causes of the capacity decrease, researchers observed electrode expansion, rupture, and corrosion of the nickel electrode substrate, active material redistribution, and accumulation of electrochemically undischargeable active material with cycling
    corecore