46 research outputs found

    Torrefaction and gasification of biomass for polygeneration: Production of biochar and producer gas at low load conditions

    Get PDF
    In this paper, a matter of biomass torrefaction and gasification is closely looked at from different points of view during low load and low equivalence ratio regime, defined as lambda = 0.08. Considering gas production, the hot gas efficiency of conversion (30%) and its energy content (4.14 MJ m(-3)) were not quite satisfying, however, this matter of fact was compensated by an interesting yield of biochar. This material was generated in 0.387 and 0.314 rates for torrefaction and torrefaction + gasification processes, respectively, which, in both cases, represents an attractive, alternative approach to the functional energy storage. It was determined that a CO2 offset of 721 kg and 660 kg could be achieved per 1 tonne of woodchips for gasification of raw woodchips and a 2-stage process with torrefaction and gasification, respectively. The measured data from both technological complexes were compared with the computational model, applying equilibrium reactions for gas components determination. In addition, the question of tar compounds contained within the producer gas, is investigated through GC-MS analysis on both qualitative and quantitative basis.Web of Science814413

    Advancing sustainable decomposition of biomass tar model compound: Machine learning, kinetic modeling, and experimental investigation in a non-thermal plasma dielectric barrier discharge reactor

    Get PDF
    This study examines the sustainable decomposition reactions of benzene using non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) reactor. The aim is to investigate the factors influencing benzene decomposition process, including input power, concentration, and residence time, through kinetic modeling, reactor performance assessment, and machine learning techniques. To further enhance the understanding and modeling of the decomposition process, the researchers determine the apparent decomposition rate constant, which is incorporated into a kinetic model using a novel theoretical plug flow reactor analogy model. The resulting reactor model is simulated using the ODE45 solver in MATLAB, with advanced machine learning algorithms and performance metrics such as RMSE, MSE, and MAE employed to improve accuracy. The analysis reveals that higher input discharge power and longer residence time result in increased tar analogue compound (TAC) decomposition. The results indicate that higher input discharge power leads to a significant improvement in the TAC decomposition rate, reaching 82.9%. The machine learning model achieved very good agreement with the experiments, showing a decomposition rate of 83.01%. The model flagged potential hotspots at 15% and 25% of the reactor’s length, which is important in terms of engineering design of scaled-up reactors.Web of Science1615art. no. 583

    Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent

    Get PDF
    Organic fraction of municipal solid waste is a type of biomass that is attractive due to its marginal cost and suitability for biogas production. The residual product of organic waste digestion is digestate, the high moisture content of which is a problem, even after mechanical dewatering, due to the significant heat requirement for drying. Hydrothermal carbonisation is a process that can potentially offer great benefits by improved mechanical dewatering and valorisation of the digestate into a better-quality solid fuel. However, such valorisation produces liquid by-product effluent rich in organic compounds. Membrane separation could be used to treat such effluent and increase the concentration of the organic compounds while at the same time facilitating the recovery of clean water in the permeate. This work presents the results of the investigation performed using polymeric membranes. The study showed that membrane separation keeps a significant fraction of organics in the retentate. Such concentration significantly increases the biomethane potential of such effluent as well as the energy that could be theoretically used for the generation of process heat using the concentrated retentate in the wet oxidation process.Web of Science284art. no. 12852

    Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon

    Get PDF
    This paper presents results that show the effect of hydrothermal carbonization and subsequent cold plasma jet treatment with helium and argon on the structure and sorption properties of a material—spent brewery grain. Treatment of activated carbon, with a cold atmospheric plasma jet, was used comparatively. The effect of activation on the pore structure of the materials was carried out by the volumetric method at low pressure (N2, 77 K). The specific surface area as well as the total pore volume, average pore size, and pore size distribution were determined using different theoretical models. A high improvement in the sorption capacity parameter was obtained for hydrochars after cold atmospheric plasma jet treatment with an increase of 7.5 times (using He) and 11.6 times (using Ar) compared with hydrochars before cold atmospheric plasma jet treatment. The increase in specific surface area was five-fold (He) and fifteen-fold (Ar). For activated carbon, such a large change was not obtained after plasma activation. Regardless of the gas used, the increase in structural parameter values was 1.1–1.3

    Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing

    Get PDF
    One of the processes that can serve to valorise low-quality biomass and organic waste is hydrothermal carbonization (HTC). It is a thermochemical process that transpires in the presence of water and uses heat to convert wet feedstocks into hydrochar (the solid product of hydrothermal carbonization). In the present experimental study, an improvement consisting of an increased hydrophobic character of HTC-treated biomass is demonstrated through the presentation of enhanced mechanical dewatering at different pressures due to HTC valorisation. As part of this work’s scope, flashing-off of low-quality steam is additionally explored, allowing for the recovery of the physical enthalpy of hot hydrochar slurry. The flashing-off vapours, apart from steam, contain condensable hydrocarbons. Accordingly, a membrane system that purifies such effluent and the subsequent recovery of chemical energy from the retentate are taken into account. Moreover, the biomethane potential is calculated for the condensates, presenting the possibility for the chemical energy recovery of the condensates.Web of Science1613art. no. 510

    recowatdig

    No full text
    Project proposes innovative, transdisciplinary approach, by enabling an access to the potential water resources, currently neglected, i.e. water evaporated during drying of high moisture solid fermentation products

    Perspektywy zastosowania techniki plazmowej w krajowym sektorze energetycznym

    No full text
    This paper presents a short review of the plasma technologies used in the commercial power industry. The most common thermal plasma sources for the pulverized coal burners and reactors used in solid fuel conversion processes are described. The authors’ own experience in the use of the plasma technique in energy applications is briefly presented. Proposals for the use of thermal plasma in the process of fuel conversion in pulverized-fuel power boilers, especially when operating at a lower technical minimum, are formulated.W niniejszym artykule przedstawiono, w oparciu o studia literaturowe, krótki przegląd technologii plazmowych stosowanych w energetyce zawodowej. Scharakteryzowano najczęściej stosowane źródła plazmy termicznej wykorzystywane w palnikach pyłowych i reaktorach stosowanych w procesach przetwarzania paliwa stałego. Krótko zaprezentowano doświadczenia własne z wykorzystania techniki plazmowej w zastosowaniach energetycznych. Przedstawiono propozycje wykorzystania plazmy termicznej w cyklu technologicznym przetwarzania paliwa w pyłowych kotłach energetycznych ze szczególnym uwzględnieniem ich pracy przy obniżonym minimum technicznym. Z przeprowadzonej analizy wynika, że w kraju brak jest szerszych doświadczeń z wykorzystania plazmy termicznej w warunkach ruchu obiektu. Na podstawie analizy wstępnie wykonanych badań, można uznać takie zastosowanie plazmy za korzystne przede wszystkim ze względu na stabilność płomienia oraz regulacyjność palnika. Realizacja podjętych przez autorów działań na rzecz wdrożenia techniki plazmowej do krajowego sektora energetycznego powinny zaowocować jej komercyjnym wdrożeniem. Przy odpowiednim wsparciu prac badawczych i rozwojowych, w szerokim zakresie w tym legislacyjnym, wdrożenie technologii plazmowych może stać się inwestycjami rentownymi dla sektora energetycznego

    Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    Get PDF
    Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources
    corecore