540 research outputs found
The genomic signature of trait-associated variants
BACKGROUND: Genome-wide association studies have identified thousands of SNP variants associated with hundreds of phenotypes. For most associations the causal variants and the molecular mechanisms underlying pathogenesis remain unknown. Exploration of the underlying functional annotations of trait-associated loci has thrown some light on their potential roles in pathogenesis. However, there are some shortcomings of the methods used to date, which may undermine efforts to prioritize variants for further analyses. Here, we introduce and apply novel methods to rigorously identify annotation classes showing enrichment or depletion of trait-associated variants taking into account the underlying associations due to co-location of different functional annotations and linkage disequilibrium. RESULTS: We assessed enrichment and depletion of variants in publicly available annotation classes such as genic regions, regulatory features, measures of conservation, and patterns of histone modifications. We used logistic regression to build a multivariate model that identified the most influential functional annotations for trait-association status of genome-wide significant variants. SNPs associated with all of the enriched annotations were 8 times more likely to be trait-associated variants than SNPs annotated with none of them. Annotations associated with chromatin state together with prior knowledge of the existence of a local expression QTL (eQTL) were the most important factors in the final logistic regression model. Surprisingly, despite the widespread use of evolutionary conservation to prioritize variants for study we find only modest enrichment of trait-associated SNPs in conserved regions. CONCLUSION: We established odds ratios of functional annotations that are more likely to contain significantly trait-associated SNPs, for the purpose of prioritizing GWAS hits for further studies. Additionally, we estimated the relative and combined influence of the different genomic annotations, which may facilitate future prioritization methods by adding substantial information
Rapid and robust association mapping of expression quantitative trait loci
We applied a simple and efficient two-step method to analyze a family-based association study of gene expression quantitative trait loci (eQTL) in a mixed model framework. This two-step method produces very similar results to the full mixed model method, with our method being significantly faster than the full model. Using the Genetic Analysis Workshop 15 (GAW15) Problem 1 data, we demonstrated the value of data filtering for reducing the number of tests and controlling the number of false positives. Specifically, we showed that removing non-expressed genes by filtering on expression variability effectively reduced the number of tests by nearly 50%. Furthermore, we demonstrated that filtering on genotype counts substantially reduced spurious detection. Finally, we restricted our analysis to the markers and transcripts that were closely located. We found five times more signals in close proximity (cis-) to transcripts than in our genome-wide analysis. Our results suggest that careful pre-filtering and partitioning of data are crucial for controlling false positives and allowing detection of genuine effects in genetic analysis of gene expression
Development of a genetic tool for product regulation in the diverse British pig breed market
<p>Abstract</p> <p>Background</p> <p>The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom.</p> <p>Results</p> <p>The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average F<sub>ST</sub> of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity.</p> <p>Conclusion</p> <p>The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.</p
Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation
Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∼300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∼1400 pathway-trait combination results with an association P value more significant than P ≤ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/
Ten years of the Genomics of Common Diseases: “The end of the beginning”
The 10th anniversary ‘Genomics of Common Diseases’ meeting was held in Baltimore, September 25-28, 2016. Professor Chris Haley reports from the meeting on progress and challenges in the field
QTL detection and allelic effects for growth and fat traits in outbred pig populations
Quantitative trait loci (QTL) for growth and fatness traits have previously been identified on chromosomes 4 and 7 in several experimental pig populations. The segregation of these QTL in commercial pigs was studied in a sample of 2713 animals from five different populations. Variance component analysis (VCA) using a marker-based identity by descent (IBD) matrix was applied. The IBD coefficient was estimated with simple deterministic (SMD) and Markov chain Monte Carlo (MCMC) methods. Data for two growth traits, average daily gain on test and whole life daily gain, and back fat thickness were analysed. With both methods, seven out of 26 combinations of population, chromosome and trait, were significant. Additionally, QTL genotypic and allelic effects were estimated when the QTL effect was significant. The range of QTL genotypic effects in a population varied from 4.8% to 10.9% of the phenotypic mean for growth traits and 7.9% to 19.5% for back fat trait. Heritabilities of the QTL genotypic values ranged from 8.6% to 18.2% for growth traits, and 14.5% to 19.2% for back fat. Very similar results were obtained with both SMD and MCMC. However, the MCMC method required a large number of iterations, and hence computation time, especially when the QTL test position was close to the marker
Prediction of IBD based on population history for fine gene mapping
A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBDL are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM
Detection of multiple quantitative trait loci and their pleiotropic effects in outbred pig populations
<p>Abstract</p> <p>Background</p> <p>Simultaneous detection of multiple QTLs (quantitative trait loci) may allow more accurate estimation of genetic effects. We have analyzed outbred commercial pig populations with different single and multiple models to clarify their genetic properties and in addition, we have investigated pleiotropy among growth and obesity traits based on allelic correlation within a gamete.</p> <p>Methods</p> <p>Three closed populations, (A) 427 individuals from a Yorkshire and Large White synthetic breed, (B) 547 Large White individuals and (C) 531 Large White individuals, were analyzed using a variance component method with one-QTL and two-QTL models. Six markers on chromosome 4 and five to seven markers on chromosome 7 were used.</p> <p>Results</p> <p>Population A displayed a high test statistic for the fat trait when applying the two-QTL model with two positions on two chromosomes. The estimated heritabilities for polygenic effects and for the first and second QTL were 19%, 17% and 21%, respectively. The high correlation of the estimated allelic effect on the same gamete and QTL test statistics suggested that the two separate QTL which were detected on different chromosomes both have pleiotropic effects on the two fat traits. Analysis of population B using the one-QTL model for three fat traits found a similar peak position on chromosome 7. Allelic effects of three fat traits from the same gamete were highly correlated suggesting the presence of a pleiotropic QTL. In population C, three growth traits also displayed similar peak positions on chromosome 7 and allelic effects from the same gamete were correlated.</p> <p>Conclusion</p> <p>Detection of the second QTL in a model reduced the polygenic heritability and should improve accuracy of estimated heritabilities for both QTLs.</p
- …
