15 research outputs found

    SurvJamda: an R package to predict patients' survival and risk assessment using joint analysis of microarray gene expression data

    Get PDF
    Summary: SurvJamda (Survival prediction by joint analysis of microarray data) is an R package that utilizes joint analysis of microarray gene expression data to predict patients' survival and risk assessment. Joint analysis can be performed by merging datasets or meta-analysis to increase the sample size and to improve survival prognosis. The prognosis performance derived from the combined datasets can be assessed to determine which feature selection approach, joint analysis method and bias estimation provide the most robust prognosis for a given set of datasets. Availability: The survJamda package is available at the Comprehensive R Archive Network, http://cran.r-project.org. Contact: [email protected]

    Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?

    Get PDF
    BACKGROUND:High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use survival prediction based on Cox regression as an assay to measure the added value of merged data sets. RESULTS:Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1. CONCLUSIONS:Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used. (b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different studies helps to better understand the biases of individual studies and can lead to the identification of strong survival factors like CYB5D1 expression

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Comparative study of joint analysis of microarray gene expression data in survival prediction and risk assessment of breast cancer patients

    No full text
    Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z-score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z-score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z-score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications

    Prediction of Survival and Risk Assessment Using Joint Analysis of Microarray Gene Expression Data

    No full text
    Gene expression profiles have been widely used in molecular classification, diagnosis and prediction, particularly in the area of oncology where accurate and early diagnosis is needed for appropriate treatment. Avoiding under-/over-treatment when it is not necessary can extend a patient's survival and prevent disease recurrence. These high-throughput assay technologies have generated terabytes of data exploited extensively to provide insights on cancer biology and the underlying mechanism of disease progression. The ultimate goal is to identify possibly tailored treatment and therapy for personalized medicine. Analysis of microarray data is constrained by the following characteristics: (i) noisy due to missing or erroneous values; (ii) high dimensional due to a large number of genes versus a few number of samples in which their expression levels are measured; (iii) costly due to expensive microarray experiments. Abundant microarray gene expression data should be processed by appropriate computational and statistical learning methodologies such as machine learning techniques. These methods are robust to noisy data and have a great capacity to analyze high dimensional data. Their computational power is nevertheless limited to sample size based on which these methods are built. These algorithms have been widely applied to microarray gene expression data to identify a set of genes known as a gene signature whose expressions are highly correlated to a target value or outcome such as disease status, tumor subtype, a patient's survival time, risk of mortality or cancer relapse. Prediction of survival time and a patient's risk which is unknown at diagnosis presents a more challenging task for machine learning methods than tumor subtype or disease classification, which is already established by oncologists. The properties of microarray data cited above, the limitation of the number of samples in cancer patients and dependency of the machine learning methods' performance on sample size justify joint analysis of microarray data to increase the number of samples. We applied joint analysis methods to breast and lung cancer data sets to improve survival prediction and risk assessment. In overall, no significant improvement or deterioration of the performance accuracy was obtained with joint analysis. However, increasing sample size helped to identify robust or stable gene signatures predictive of survival time and risk assessment. Our achievements and learned-lessons from joint analysis of microarray gene expression data can be used as a guideline for future research studies in classification and prediction

    EMOTE-conv: A Computational Pipeline to Convert Exact Mapping of Transcriptome Ends (EMOTE) Data to the Lists of Quantified Genomic Positions Correlated to Related Genomic Information

    No full text
    The determination of 5'-ends of RNA molecules is important for understanding various steps of gene expression and regulation in all organisms, such as transcription initiation, RNA maturation, and degradation. While previous methods like Phosphorylation Assay By Ligation of Oligonucleotides, Rapid Amplification of cDNA Ends, Capped Analysis of Gene expression, tag RNA-seq and differential RNA-seq have their own specifications and limitations, Exact Mapping Of Transcriptome Ends (EMOTE) assay has been designed to determine the 5'-ends of RNAs on a transcriptome-wide scale. EMOTE-conv exploits the raw sequence reads generated from the EMOTE assay which is, to the best of our knowledge, the only method that can map the exact RNA 5'-ends of of all types on a transcriptome wide scale. It converts EMOTE data into the quantified list of genomic positions that corresponds to the 5'-end of RNA, signifying 5'-base RNA and the other related genomic information. EMOTE-conv is platform-independent, user-friendly and easy-to-use. It can be used with the data generated from other sequencing platforms with a converter as well as the data generated from any organism, species or strains. The EMOTE-conv software is available at: http://sourceforge.net/projects/emotecon
    corecore