11,270 research outputs found
BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data
The Birmingham Solar Oscillations Network (BiSON) has provided high-quality
high-cadence observations from as far back in time as 1978. These data must be
calibrated from the raw observations into radial velocity and the quality of
the calibration has a large impact on the signal-to-noise ratio of the final
time series. The aim of this work is to maximise the potential science that can
be performed with the BiSON data set by optimising the calibration procedure.
To achieve better levels of signal-to-noise ratio we perform two key steps in
the calibration process: we attempt a correction for terrestrial atmospheric
differential extinction; and the resulting improvement in the calibration
allows us to perform weighted averaging of contemporaneous data from different
BiSON stations. The improvements listed produce significant improvement in the
signal-to-noise ratio of the BiSON frequency-power spectrum across all
frequency ranges. The reduction of noise in the power spectrum will allow
future work to provide greater constraint on changes in the oscillation
spectrum with solar activity. In addition, the analysis of the low-frequency
region suggests we have achieved a noise level that may allow us to improve
estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure
Population structures in the SARA and SARB reference collections of Salmonella enterica according to MLST, MLEE and microarray hybridization
In the 1980's and 1990's, population genetic analyses based on Multilocus Enzyme Electrophoresis (MLEE) provided an initial overview of the genetic diversity of multiple bacterial species, including Salmonella enterica. The genetic diversity within S. enterica subspecies enterica according to MLEE is represented by the SARA and SARB reference collections, each consisting of 72 isolates, which have been extensively used for comparative analyses. MLEE has subsequently been replaced by Multilocus Sequence Typing (MLST). Our initial MLST results indicated that some strains within the SARB collection differed from their published descriptions. We therefore performed MLST on four versions of the SARB collection from different sources and one collection of SARA, and found that multiple isolates in SARB and SARA differ in serovar from their original description, and other SARB isolates differed between different sources. Comparisons with a global MLST database allowed a plausible reconstruction of the serovars of the original collection. MLEE, MLST and microarrays were largely concordant at recognizing closely related strains. MLST was particularly effective at recognizing discrete population genetic groupings while the two other methods provided hints of higher order relationships. However, quantitative pair-wise phylogenetic distances differed considerably between all three methods. Our results provide a translation dictionary from MLEE to MLST for the extant SARA and SARB collections which can facilitate genomic comparisons based on archival insights from MLEE
Many-body effects on the capacitance of multilayers made from strongly correlated materials
Recent work by Kopp and Mannhart on novel electronic systems formed at oxide
interfaces has shown interesting effects on the capacitances of these devices.
We employ inhomogeneous dynamical mean-field theory to calculate the
capacitance of multilayered nanostructures. These multilayered nanostructures
are composed of semi-infinite metallic leads coupled via a strongly correlated
dielectric barrier region. The barrier region can be adjusted from a metallic
regime to a Mott insulator through adjusting the interaction strength. We
examine the effects of varying the barrier width, temperature, potential
difference, screening length, and chemical potential. We find that the
interaction strength has a relatively strong effect on the capacitance, while
the potential and temperature show weaker dependence.Comment: 19 pages, 7 figures, REVTe
Hot phonon decay in supported and suspended exfoliated graphene
Near infrared pump-probe spectroscopy has been used to measure the ultrafast
dynamics of photoexcited charge carriers in monolayer and multilayer graphene.
We observe two decay processes occurring on 100 fs and 2 ps timescales. The
first is attributed to the rapid electron-phonon thermalisation in the system.
The second timescale is found to be due to the slow decay of hot phonons. Using
a simple theoretical model we calculate the hot phonon decay rate and show that
it is significantly faster in monolayer flakes than in multilayer ones. In
contrast to recent claims, we show that this enhanced decay rate is not due to
the coupling to substrate phonons, since we have also seen the same effect in
suspended flakes. Possible intrinsic decay mechanisms that could cause such an
effect are discussed.Comment: 4 pages, 3 figure
Evaluation of high temperature structural adhesives for extended service, phase 4
The evaluation of three phenylquinoxaline polymers as high temperature structural adhesives is presented. These included an experimental crisskubjabke oiktner (X-PQ) and two experimental materials (PPQ-2501) and (PPQ-HC). Lap shear, crack extension, and climing drum peel specimens were fabricated from all three polymers, and tested after thermal, combined thermal/humidity, and stressed Skydrol exposure. All three polymers generally performed well as adhesives at initial test temperatures from 219K (-67 F) to 505K (450 F) and after humidity exposure. The 644K (700 F) cured test specimens exhibited superior Skydrol resistance and thermal stability at 505K (450 F) when compared to the 602K (625 F) cured test specimens
Performance of the Birmingham Solar-Oscillations Network (BiSON)
The Birmingham Solar-Oscillations Network (BiSON) has been operating with a
full complement of six stations since 1992. Over 20 years later, we look back
on the network history. The meta-data from the sites have been analysed to
assess performance in terms of site insolation, with a brief look at the
challenges that have been encountered over the years. We explain how the
international community can gain easy access to the ever-growing dataset
produced by the network, and finally look to the future of the network and the
potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20.
First online: 2015 December 7. Open Acces
Strong nonlinear optical response of graphene flakes measured by four-wave mixing
We present the first experimental investigation of nonlinear optical
properties of graphene flakes. We find that at near infrared frequencies a
graphene monolayer exhibits a remarkably high third-order optical nonlinearity
which is practically independent of the wavelengths of incident light. The
nonlinear optical response can be utilized for imaging purposes, with image
contrasts of graphene which are orders of magnitude higher than those obtained
using linear microscopy.Comment: 4 pages, 5 figure
Complete chaotic synchronization in mutually coupled time-delay systems
Complete chaotic synchronization of end lasers has been observed in a line of
mutually coupled, time-delayed system of three lasers, with no direct
communication between the end lasers. The present paper uses ideas from
generalized synchronization to explain the complete synchronization in the
presence of long coupling delays, applied to a model of mutually coupled
semiconductor lasers in a line. These ideas significantly simplify the analysis
by casting the stability in terms of the local dynamics of each laser. The
variational equations near the synchronization manifold are analyzed, and used
to derive the synchronization condition that is a function of the parameters.
The results explain and predict the dependence of synchronization on various
parameters, such as time-delays, strength of coupling and dissipation. The
ideas can be applied to understand complete synchronization in other chaotic
systems with coupling delays and no direct communication between synchronized
sub-systems.Comment: 22 pages, 6 figure
The Sun in transition? Persistence of near-surface structural changes through Cycle 24
We examine the frequency shifts in low-degree helioseismic modes from the
Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 -
2016, and compare them with a number of global activity proxies well as a
latitudinally-resolved magnetic index. As well as looking at frequency shifts
in different frequency bands, we look at a parametrization of the shift as a
cubic function of frequency. While the shifts in the medium- and highfrequency
bands are very well correlated with all of the activity indices (with the best
correlation being with the 10.7 cm radio flux), we confirm earlier findings
that there appears to have been a change in the frequency response to activity
during solar cycle 23, and the low frequency shifts are less correlated with
activity in the last two cycles than they were in Cycle 22. At the same time,
the more recent cycles show a slight increase in their sensitivity to activity
levels at medium and higher frequencies, perhaps because a greater proportion
of activity is composed of weaker or more ephemeral regions. This lends weight
to the speculation that a fundamental change in the nature of the solar dynamo
may be in progress.Comment: 9 pages, 6 figures. Accepted by MNRAS 24 May 201
- …