98 research outputs found
Prioritization of Biomarker Targets in Human Umbilical Cord Blood: Identification of Proteins in Infant Blood Serving as Validated Biomarkers in Adults
Background: Early diagnosis represents one of the best lines of defense in the fight against a wide array of human diseases. Umbilical cord blood (UCB) is one of the first easily available diagnostic biofluids and can inform about the health status of newborns. However, compared with adult blood, its diagnostic potential remains largely untapped
Searching for a "Hidden" Prophage in a Marine Bacterium
National Science Foundation [MCB-0132070, MCB-0238515, MCB-0537041]; Xiamen University [2007CB815904]Prophages are common in many bacterial genomes. Distinguishing putatively viable prophages from nonviable sequences can be a challenge, since some prophages are remnants of once-functional prophages that have been rendered inactive by mutational changes. In some cases, a putative prophage may be missed due to the lack of recognizable prophage loci. The genome of a marine roseobacter, Roseovarius nubinhibens ISM (hereinafter referred to as ISM), was recently sequenced and was reported to contain no intact prophage based on customary bioinformatic analysis. However, prophage induction experiments performed with this organism led to a different conclusion. In the laboratory, virus-like particles in the ISM culture increased more than 3 orders of magnitude following induction with mitomycin C. After careful examination of the ISM genome sequence, a putative prophage (ISM-pro1) was identified. Although this prophage contains only minimal phage-like genes, we demonstrated that this "hidden" prophage is inducible. Genomic analysis and reannotation showed that most of the ISM-pro1 open reading frames (ORFs) display the highest sequence similarity with Rhodobacterales bacterial genes and some ORFs are only distantly related to genes of other known phages or prophages. Comparative genomic analyses indicated that ISM-pro1-like prophages or prophage remnants are also present in other Rhodobacterales genomes. In addition, the lysis of ISM by this previously unrecognized prophage appeared to increase the production of gene transfer agents (GTAs). Our study suggests that a combination of in silico genomic analyses and experimental laboratory work is needed to fully understand the lysogenic features of a given bacterium
The Florence Statement on Triclosan and Triclocarban
The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated
Effect of Parameters on Oxychlorination of Tert-Butyl Ethers
The effect of concentration, molar ratios of reagents, pH, and temperature on formation of chloro-organic products in reaction of tert-butyl ethers with chloride ions and hydrogen peroxide has been determined. A significant effect of Cl− ions and H2O2 molar ratios on the rate of chloro-organic product formation has been observed. Studies on oxychlorination of tert-butylethyl ether (ETBE) at pH 7, 3.5, and 2.5 have been carried out. It was found that introduction of hydronium ions into the reaction system considerably hastened the process of chloro-organic product formation. Hydronium ions contribute to the formation of the reactive tert-butyl carbocation, which undergoes secondary reactions in the presence of reactive forms of chlorine and oxygen. Moreover, the effect of temperature on ETBE (tert-butylethyl ether) and MTBE (tert-butylmethyl ether) conversions was verified. The reactions of MTBE and ETBE oxychlorination were carried out at temperatures of 5°C, 20°C, and 35°C
Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants
Reproduced with permission from Environmental Health Perspectives."This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants." doi:10.1289/ehp.1002497Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: they are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites.Support for the workshop, from which this article evolved, was provided by the National Institute of Environmental Health Sciences Superfund Research Program (P42-ES04940)
Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants
Reproduced with permission from Environmental Health Perspectives."This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants." doi:10.1289/ehp.1002497Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: they are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites.Support for the workshop, from which this article evolved, was provided by the National Institute of Environmental Health Sciences Superfund Research Program (P42-ES04940)
- …