176 research outputs found

    SQL Injection analysis, Detection and Prevention

    Get PDF
    Web sites are dynamic, static, and most of the time a combination of both. Web sites need protection in their database to assure security. An SQL injection attacks interactive web applications that provide database services. These applications take user inputs and use them to create an SQL query at run time. In an SQL injection attack, an attacker might insert a malicious SQL query as input to perform an unauthorized database operation. Using SQL injection attacks, an attacker can retrieve or modify confidential and sensitive information from the database. It may jeopardize the confidentiality and security of Web sites which totally depends on databases. This report presents a “code reengineering” that implicitly protects the applications which are written in PHP from SQL injection attacks. It uses an original approach that combines static as well as dynamic analysis. [2] In this report, I mentioned an automated technique for moving out SQL injection vulnerabilities from Java code by converting plain text inputs received from users into prepared statements. [3

    Contribution Of Cover Crop Roots To Soil Fertility And Crop Nutrition In Organic Spring Wheat In Quebec, Canada.

    Get PDF
    Assessing the contribution of cover crops (i.e. crops that are planted to improve soil health – not for harvest) to soil fertility is particularly complex. Little is known about how much N and how N from decomposing cover crop roots will become available to subsequent crops. The objective of the project was to determine the respective N contribution of shoots and roots of annual cover crop species to crop N uptake in organic spring wheat. A 2-year field experiment was conducted twice (2016-2017, 2017-2018) in Quebec, Canada. Cover crops were grown and terminated in Year 1, and a cash crop of spring wheat was grown the subsequent year (Year 2). Four annual cover crop species (common vetch, field pea, forage radish, and cereal rye) and four cover crop biomass input levels (shoot only, root only, and shoot plus root) were tested. Forage radishes and peas produced the highest total biomass (shoot and root) while radishes produced the highest root biomass. Common vetch had higher shoot N concentration than other species whereas its root N concentration was similar to radishes and peas. At spring wheat seeding, soil mineral N content (0-45 cm) was significantly higher in whole CC treatments (39 kg N ha-1) compared to treatments of shoot or root only (33 and 29 kg N ha-1, respectively). In 2017, spring wheat yields were higher following the whole CC than following the shoot or root parts only. Improving our understanding on soil N budget may help to reduce N losses from cover crop-based cropping systems such as organic farming systems. On a broader scale, this research aims to reduce the impact of organic farming on the environment by increasing its N use efficiency

    Evaluation of Annual Companion Crops for the Establishment of Perennial Forage Crops in Eastern Canada

    Get PDF
    The use of companion crops when establishing perennial forages is desirable as it often reduces weed growth and increases forage biomass in the seeding year. In eastern Canada, oat (Avena sativa L.) is the main species used as companion crop; although other species are used, they have not been systematically evaluated. A field study was established in 2019 at three sites in QuĂ©bec, Canada, to contrast the use of six annual species as companion crops for the establishment of lucerne (Medicago sativa L.)-timothy (Phleum pratense L.) mixtures. Species evaluated include berseem clover (Trifolium alexandrinum L.), annual ryegrass (Lolium multiflorum Lamarck), forage pea (Pisum sativum L.), forage oat, Japanese millet [Echinochloa esculenta (A. Braun) H. Scholz], and sudangrass [Sorghum × drummondii (Nees ex. Steud.) Millsp. & Chase]. The control treatment consisted of the perennial species seeded without companion crop. Treatments were seeded at three dates (mid-May to early-June, mid-June to early-July, and early August) and evaluated during the seeding year based on biomass production and botanical composition. Overall, across sites, for the first two seeding dates, highest annual forage yields were observed with sudangrass, Japanese millet, and oat as companion crops. The use of these species increased yields by 1.8 to 2.5 Mg ha-1 on a dry matter basis (DM) compared to the control which yielded an average of 3.7 Mg DM ha-1. For the early August seeding, response varied significantly across sites. Annual yields were the highest with the use of oat at two sites (avg. of 2.4 Mg DM ha-1), whereas no differences between treatments were observed at the other site. Companion crop species which maximized total forage yields in the seeding year often reduced weed biomass, but also that of perennial species. The impact of treatments on the survival of perennial forages and their production during the first post-seeding year will be presented in a later publication

    Design Development and Evaluation of Agomelatine Microemulsion for Intranasal Delivery

    Get PDF
    The purpose of this study was to develop and optimize microemulsion containing agomelatine for intranasal delivery. Agomelatine, an antidepressant drug, has absolute bioavailability of only 5% due to high first pass metabolism. Agomelatine microemulsion and were prepared by titration method. Ternary phase diagram gave the microemulsion region and the concentration of oil; Smix and water were selected from ternary phase diagram. Based on solubility study, oleic acid, tween 80 and propylene glycol were selected as oil, surfactant and co surfactant respectively. Microemulsions were prepared using water titration method. 1:1% v/v ratio (Tween 80: Propylene glycol) was selected for formulation development. The prepared microemulsions were optimized optical transparency, viscosity measurement, phase separation, determination of pH, measurement of globule size, measurement of zeta potential, drug content, In vitro diffusion study, stability studies. The optimized batch was further characterized for optical transparency, viscosity measurement, phase separation, determination of pH, measurement of globule size, measurement of zeta potential, drug content, In vitro diffusion study, stability studies. Keywords: Depression, Intranasal, Microemulsions, Agomelatin

    Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis

    Get PDF
    Reduced tillage is increasingly promoted to improve sustainability and productivity of agricultural systems. Nonetheless, adoption of reduced tillage by organic farmers has been slow due to concerns about nutrient supply, soil structure, and weeds that may limit yields. Here, we compiled the results from both published and unpublished research comparing deep or shallow inversion tillage, with various categories of reduced tillage under organic management. Shallow refers to less than 25 cm. We found that (1) division of reduced tillage practices into different classes with varying degrees of intensity allowed us to assess the trade-offs between reductions in tillage intensity, crop yields, weed incidence, and soil C stocks. (2) Reducing tillage intensity in organic systems reduced crop yields by an average of 7.6 % relative to deep inversion tillage with no significant reduction in yield relative to shallow inversion tillage. (3) Among the different classes of reduced tillage practice, shallow non-inversion tillage resulted in non-significant reductions in yield relative to deep inversion; whereas deep non-inversion tillage resulted in the largest yield reduction, of 11.6 %. (4) Using inversion tillage to only a shallow depth resulted in minimal reductions in yield, of 5.5 %, but significantly higher soil C stocks and better weed control. This finding suggests that this is a good option for organic farmers wanting to improve soil quality while minimizing impacts on yields. (5) Weeds were consistently higher, by about 50 %, when tillage intensity was reduced, although this did not always result in reduced yields

    Green and animal manure use in organic field crop systems

    Get PDF
    Dual-use cover/green manure (CGM) crops and animal manure are used to supply nitrogen (N) and phosphorus (P) to organically grown field crops. A comprehensive review of previous research was conducted to identify how CGM crops and animal manure have been used to meet N and P needs of organic field crops, and to identify knowledge gaps to direct future research efforts. Results indicate that: (a) CGM crops are used to provide N to subsequent cash crops in rotations; (b) CGM-supplied N generally can meet field crop needs in warm, humid regions but is insufficient for organic grain crops grown in cool and sub-humid regions; (c) adoption of conservation tillage practices can create or exacerbate N deficiencies; (d) excess N and P can result where animal manures are accessible if application rates are not carefully managed; and (e) integrating animal grazing into organic field crop systems has potential benefits but is generally not practiced. Work is needed to better understand the mechanisms governing the release of N by CGM crops to subsequent cash crops, and the legacy effects of animal manure applications in cool and sub-humid regions. The benefits and synergies that can occur by combining targeted animal grazing and CGMs on soil N, P, and other nutrients should be investigated. Improved communication and networking among researchers can aid efforts to solve soil fertility challenges faced by organic farmers when growing field crops in North America and elsewhere

    Bioavailability of Macro and Micronutrients Across Global Topsoils: Main Drivers and Global Change Impacts

    Get PDF
    Understanding the chemical composition of our planet\u27s crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro- and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∌10,000 observations) and in response to global change manipulations (∌5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome-dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling-atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management
    • 

    corecore