786 research outputs found
Polarization Squeezing of Continuous Variable Stokes Parameters
We report the first direct experimental characterization of continuous
variable quantum Stokes parameters. We generate a continuous wave light beam
with more than 3 dB of simultaneous squeezing in three of the four Stokes
parameters. The polarization squeezed beam is produced by mixing two quadrature
squeezed beams on a polarizing beam splitter. Depending on the squeezed
quadrature of these two beams the quantum uncertainty volume on the
Poincar\'{e} sphere became a `cigar' or `pancake'-like ellipsoid.Comment: 4 pages, 5 figure
Entanglement and spin squeezing in the two-atom Dicke model
We analyze the relation between the entanglement and spin-squeezing parameter
in the two-atom Dicke model and identify the source of the discrepancy recently
reported by Banerjee and Zhou et al that one can observe entanglement without
spin squeezing. Our calculations demonstrate that there are two criteria for
entanglement, one associated with the two-photon coherences that create
two-photon entangled states, and the other associated with populations of the
collective states. We find that the spin-squeezing parameter correctly predicts
entanglement in the two-atom Dicke system only if it is associated with
two-photon entangled states, but fails to predict entanglement when it is
associated with the entangled symmetric state. This explicitly identifies the
source of the discrepancy and explains why the system can be entangled without
spin-squeezing. We illustrate these findings in three examples of the
interaction of the system with thermal, classical squeezed vacuum and quantum
squeezed vacuum fields.Comment: 7 pages, 1 figur
Spin-spin interaction and spin-squeezing in an optical lattice
We show that by displacing two optical lattices with respect to each other,
we may produce interactions similar to the ones describing ferro-magnetism in
condensed matter physics. We also show that particularly simple choices of the
interaction lead to spin-squeezing, which may be used to improve the
sensitivity of atomic clocks. Spin-squeezing is generated even with partially,
and randomly, filled lattices, and our proposal may be implemented with current
technology.Comment: 4 pages, including 4 figure
Radiocarbon Date List X: Baffin Bay, Baffin Island, Iceland, Labrador Sea, and the Northern North Atlantic
Date List X contains an annotated listing of 213 radiocarbon dates determined on samples from marine and terrestrial environments. The marine samples were collected from the East Greenland, Iceland, Spitzbergen, and Norwegian margins, Baffin Bay, and Labrador Sea. The terrestrial samples were collected from Vestfirdir, Iceland and Baffin Island. The samples were submitted by INSTAAR and researchers affiliated with INSTAAR\u27s Micropaleontology Laboratory under the direction of Dr.’s John T. Andrews and Anne E. Jennings. All of the dates from marine sediment cores were determined from either shells or foraminifera (both benthic and planktic). All dates were obtained by the Accelerator Mass Spectrometry (AMS) method. Regions of concentrated marine research include: Baffin Bay, Baffin Island, Labrador Sea, East Greenland fjords, shelf and slope, Denmark Strait, the southwestern and northwestern Iceland shelves, and Vestfirdir, Iceland. The non-marine radiocarbon dates are from peat, wood, plant microfossils, and mollusc. The radiocarbon dates have been used to address a variety of research objectives such as: 1. determining the timing of northern hemisphere high latitude environmental changes including glacier advance and retreat, and 2. assessing the accuracy of a fluctuating reservoir correction. Thus, most of the dates constrain the timing, rate, and interaction of late Quaternary paleoenvironmental fluctuations in sea level, glacier extent, sediment input, and changes in ocean circulation patterns. Where significant, stratigraphic and sample contexts are presented for each core to document the basis for interpretations
Entanglement and Extreme Spin Squeezing
For any mean value of a cartesian component of a spin vector we identify the
smallest possible uncertainty in any of the orthogonal components. The
corresponding states are optimal for spectroscopy and atomic clocks. We show
that the results for different spin J can be used to identify entanglement and
to quantity the depth of entanglement in systems with many particles. With the
procedure developed in this letter, collective spin measurements on an ensemble
of particles can be used as an experimental proof of multi-particle
entanglementComment: 4 pages, 2 figures, minor changes in the presentatio
Simulations and Experiments on Polarisation Squeezing in Optical Fibre
We investigate polarisation squeezing of ultrashort pulses in optical fibre,
over a wide range of input energies and fibre lengths. Comparisons are made
between experimental data and quantum dynamical simulations, to find good
quantitative agreement. The numerical calculations, performed using both
truncated Wigner and exact phase-space methods, include nonlinear and
stochastic Raman effects, through coupling to phonons variables. The
simulations reveal that excess phase noise, such as from depolarising GAWBS,
affects squeezing at low input energies, while Raman effects cause a marked
deterioration of squeezing at higher energies and longer fibre lengths. The
optimum fibre length for maximum squeezing is also calculated.Comment: 19 pages, lots of figure
Inverse spectral problems for Sturm-Liouville operators with singular potentials
The inverse spectral problem is solved for the class of Sturm-Liouville
operators with singular real-valued potentials from the space .
The potential is recovered via the eigenvalues and the corresponding norming
constants. The reconstruction algorithm is presented and its stability proved.
Also, the set of all possible spectral data is explicitly described and the
isospectral sets are characterized.Comment: Submitted to Inverse Problem
Nonlinear atom interferometer surpasses classical precision limit
Interference is fundamental to wave dynamics and quantum mechanics. The
quantum wave properties of particles are exploited in metrology using atom
interferometers, allowing for high-precision inertia measurements [1, 2].
Furthermore, the state-of-the-art time standard is based on an interferometric
technique known as Ramsey spectroscopy. However, the precision of an
interferometer is limited by classical statistics owing to the finite number of
atoms used to deduce the quantity of interest [3]. Here we show experimentally
that the classical precision limit can be surpassed using nonlinear atom
interferometry with a Bose-Einstein condensate. Controlled interactions between
the atoms lead to non-classical entangled states within the interferometer;
this represents an alternative approach to the use of non-classical input
states [4-8]. Extending quantum interferometry [9] to the regime of large atom
number, we find that phase sensitivity is enhanced by 15 per cent relative to
that in an ideal classical measurement. Our nonlinear atomic beam splitter
follows the "one-axis-twisting" scheme [10] and implements interaction control
using a narrow Feshbach resonance. We perform noise tomography of the quantum
state within the interferometer and detect coherent spin squeezing with a
squeezing factor of -8.2dB [11-15]. The results provide information on the
many-particle quantum state, and imply the entanglement of 170 atoms [16]
- …