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The spherical wave expansion with a single origin is sometimes used in connection with near-field
acoustical holography to determine the sound field on the surface of a source. The radiated field is
approximated by a truncated expansion, and the expansion coefficients are determined by matching
the sound field model to the measured pressure close to the source. This problem is ill posed, and
therefore regularization is required. The present paper investigates the consequence of using only
the expansion truncation as regularization approach and compares it with results obtained when
additional regularization �the truncated singular value decomposition� is introduced. Important
differences between applying the method when using a microphone array surrounding the source
completely and an array covering only a part of the source are described. Another relevant issue is
the scaling of the wave functions. It is shown that it is important for the additional regularization to
work properly that the wave functions are scaled in such a way that their magnitude on the
measurement surface decreases with the order. Finally, the method is applied on nonspherical
sources using a vibrating plate in both simulations and an experiment, and the performance is
compared with the equivalent source method.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.3068451�

PACS number�s�: 43.60.Sx, 43.60.Pt, 43.20.Rz �EGW� Pages: 1529–1537

I. INTRODUCTION

Near-field acoustical holography1 �NAH� is a technique
that reconstructs the sound pressure, particle velocity, and/or
sound intensity on the surface of a sound source based on the
acoustic field measured at a set of positions close to the
source. Knowing precisely the areas with highest noise ra-
diation is an important prerequisite for choosing an effective
noise reduction strategy.

One approach within a variety of NAH methods makes
use of the spherical wave expansion with a single origin. The
idea is to express the sound field as the truncated wave ex-
pansion, and then estimate the coefficients of the included
expansion functions. Assuming that the truncated series is an
acceptable approximation to the true field, the calculated co-
efficients are reused to estimate the sound field at positions
different from the measurement positions, e.g., on the source.
This type of approach can be divided into two subcategories.

The first subcategory exploits the fact that the expansion
functions are orthogonal on a spherical surface, and by sam-
pling the sound field with a spherical microphone array the
coefficients can be estimated using numerical integration.2

The second subcategory finds a set of coefficients to the trun-
cated expansion by fitting the model to the measured data,
e.g., by minimization of the difference between the measured
sound pressure and the predicted sound pressure at the mi-
crophone positions in a least squares sense.3–7 The latter ap-
proach does not rely on the orthogonality of the wave func-
tions, and hence the array does not need to be of spherical
shape. The present paper focuses only on this approach.

The truncation is required for practical reasons since the
expansion has an infinite number of terms, but it also benefits
the reconstruction accuracy because of its inherent regulariz-
ing effect. The strong radial decay of the high order terms
makes the problem more ill posed, which means that the
truncation of the expansion makes the method less sensitive
to noise in the measured data. Other ways of regularizing the
problem is by use of Tikhonov regularization or truncated
singular value decomposition �TSVD�.8 Often, the truncation
of the spherical waves is used as the only regularization

a�Author to whom correspondence should be addressed. Electronic mail:
jgomes@bksv.com. Also at Brüel & Kjær Sound and Vibration, Skods-
borgvej 307, DK-2850 Nærum, Denmark.
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method. In that case, the SVD, which is required in the
TSVD and normally also for Tikhonov regularization, is
avoided, which saves computation time. This paper investi-
gates how well the truncation of the spherical wave expan-
sion works as a regularization method, and determines the
circumstances where other regularization approaches such as
Tikhonov or the TSVD become necessary.

Research within NAH based on the single origin spheri-
cal wave expansion �SOSWE� often uses the wave expansion
directly as it appears from the mathematical derivation with-
out scaling or normalizing the spherical Hankel functions.3–7

In Ref. 9 the Hankel functions are normalized on the mea-
surement surface, but without any arguments given for this
choice. To the authors’ knowledge there are no published
studies on the consequence of not scaling the functions. The
present paper demonstrates the importance of the scaling and
suggests scaling the waves on the surface of the source.

In principle the SOSWE approach has problems with
mapping on irregular source surfaces. For example, for exte-
rior problems the spherical wave model is valid only outside
the minimum sphere �the smallest sphere that encloses the
source with its center at the origin of the spherical expan-
sion�. This means that all measurement and calculation
points should be outside the minimum sphere, which is pos-
sible only if the source surface to be mapped has a spherical
shape. However, results have shown that an acceptable accu-
racy can be achieved even when dealing with nonspherical
source surfaces.3,5,7

The equivalent source method �ESM�10–12 will be used
as a benchmark method when investigating the performance
of the SOSWE approach on nonspherical sources. ESM ap-
proximates the sound field by a superposition of the sound
fields of simple sources distributed inside the source, and it
does not require the source to be of separable geometry.

II. OUTLINE OF THEORY

A. Single origin spherical wave expansion

In this paper only exterior �free-field� problems are con-
sidered, and hence the expansion only includes outgoing
spherical waves. At a point outside the minimum sphere, r
= �r ,� ,��, where � and � are the zenith and azimuth angle,
respectively, the sound pressure can then be expressed as

p�r� = �
n=0

�

�
m=−n

n

ãnmhn�kr�Yn
m��,�� , �1�

where hn is the nth order spherical Hankel function of the
second kind �with the ei�t sign convention�, k is the wave-
number, ãnm are the unknown expansion coefficients, and Yn

m

is a “spherical harmonic.”1

In the SOSWE method the sound field is approximated
as a truncated version of Eq. �1�,

p�r� � �
n=0

N

�
m=−n

n

ãnmhn�kr�Yn
m��,�� = �

j=1

J

ãj�̃ j�r� , �2�

where ãj = ãnm and �̃ j�r�=hn�kr�Yn
m�� ,�� are elementary

wave functions with j� �n2+n+m+1�= �1,2 , . . . , �N+1�2�.
The method assumes that the consequence of truncating the

expansion at some number, J, is acceptable. At some limit
the high order elementary waves cannot be sampled ad-
equately with a given microphone spacing, which makes it
reasonable to truncate the series. Also, the high order Hankel
functions have a strong decay in the region between the re-
construction surface and the measurement surface, which
causes potentially large errors during the reconstruction pro-
cess if the measurement noise contains high order compo-
nents, i.e., the truncation has a regularizing effect.

The magnitude of the radial part of the elementary wave
functions in Eq. �2� increases with the order n for a given
distance from the expansion origin. As will be demonstrated
in Sec. III A, the SOSWE method in general performs better
if the elementary wave functions are scaled so that their mag-
nitude decreases on the measurement surface with the order.
This can be done by rewriting Eq. �2� as

p�r� � �
n=0

N

�
m=−n

n

anm
hn�kr�
hn�krs�

Yn
m��,�� = �

j=1

J

aj� j�r� , �3�

where aj =anm= ãnmhn�krs� and � j�r�
= �hn�kr� /hn�krs��Yn

m�� ,�� defines a new set of elementary
wave functions. The radial distance, rs, defines the surface of
a sphere at which the radial part of the functions has equal
amplitude. There are in principle no restrictions on the posi-
tion of the scaling surface. If it is placed between the expan-
sion origin and the source surface, then the elementary wave
functions corresponding to a high order, n, have the lowest
magnitude on both the source and measurement surface, and
if it coincides with the source surface the magnitude is
roughly the same on this surface for all waves �assuming a
spherical source shape�, whereas it decreases with n on the
measurement surface.

Equation �3� can be used to express the sound pressure
at M field positions, and on matrix form this yields

p = Ba , �4�

where �a�J�1 contains the coefficients, aj, �p�M�1 contains
the sound pressure at M field points, and the elements of
�B�M�J are the values of the jth elementary wave at the mth
field point.

If p contains measured pressure data, then the expansion
coefficients are the only unknowns in Eq. �4�. The number of
waves and the number of measurement points are not neces-
sarily equal, yielding an overdetermined or underdetermined
system of equations. To get a unique solution the problem is
solved using least squares and least norm for M �J and M
�J, respectively,

a = 	�BHB�−1BHp for M � J

BH�BBH�−1p for M � J ,

 �5�

where H denotes the Hermitian transpose.
The computation of the SVD yields B=�i=1

I ui	ivi
H,

where ui and vi are the left and right singular vectors, respec-
tively, and 	i are the singular values. If only the terms cor-
responding to nonzero singular values are included, i.e., I
=rank�B�, Eq. �5� can then be written as
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a = �
i=1

I
ui

Hp

	i
vi �6�

for both the overdetermined and underdetermined cases. If
the condition number of B is high, additional regularization
is needed in order to prevent strong amplifications of the
measurement noise in p. This can be done using the TSVD to
get a regularized solution vector

areg = �
i=1

Ireg ui
Hp

	i
vi. �7�

The truncation parameter, Ireg, can be determined using au-
tomated parameter choice methods such as the L-curve
analysis or generalized cross-validation �GCV�.8

As mentioned earlier, the truncation of the wave expan-
sion is often used as the only type of regularization, which
means that the expansion coefficients can be found directly
from Eq. �5�. The computation time increases if the TSVD is
introduced in addition, but as demonstrated in Sec. III C, in
many cases it will give a more accurate reconstruction result.

After the calculation of areg, these coefficients can be
reused in Eq. �3� to calculate the pressure on the source
surface, and the particle velocity on the surface of the source
can be obtained by use of Euler’s equation.1

B. Equivalent source method

ESM will be used for benchmarking in this paper. The
principle behind the method is quite similar to that of
SOSWE, but it is based on a distributed set of equivalent
sources, i.e., multiple origins, and the method normally only
uses the monopoles from the wave expansion. The sound
field in a point r is estimated as

p�r� � �
j=1

J

ajG�r,r j� , �8�

where G�r ,r j� is the free-space Green’s function with its
origin at a point r j. The pressure at a set of field points can
then be expressed in the same form as for SOSWE in Eq. �4�,
and the coefficients can be found by use of, for instance, Eq.
�7�. Finally, the resulting coefficients of the equivalent
sources, areg, can be used to estimate the pressure and/or
particle velocity on the source surface.

III. SIMULATED MEASUREMENTS

In all the test cases that follow, only the prediction of the
particle velocity is considered, and the resulting reconstruc-
tion error is calculated as

�ṽ − v�2

�ṽ�2

· 100 % , �9�

where ṽ is a vector of the “true” velocities at a set of recon-
struction points, and v contains the estimated velocities. Im-
perfections in the setup are simulated by introducing normal
distributed random amplitude and phase mismatch between
the microphones with standard deviations of 0.2 dB and 1°,
respectively. The resulting signal-to-noise ratio �SNR� was

approximately 30 dB in all the simulated results. Tests have
also been made with random background noise with the
same SNR, but this did not have any effect on the overall
conclusions. Hence, only the results based on mismatch er-
rors are shown in the present paper.

The first test case to be considered consists of mono-
poles that are distributed on a patch of a virtual spherical
surface with a radius of 0.2 m, as shown in Fig. 1�a�. Their
positions correspond to a regular grid of 4�4 points in the
yz-direction with a spacing of 6 cm, which is projected onto
the virtual sphere. The phase difference between neighboring
monopoles is set to 180° to create an evanescent sound field.
The reconstruction points in Fig. 1�b� correspond to 15
�15 points with a spacing of 2 cm in the yz-direction, which
are projected onto a spherical surface of radius rs=0.25 m.
Two different simulated arrays will be considered. In Fig.
1�c� there are 303 measurement positions placed on a spheri-
cal surface with a radius of rm=0.3 m with an average spac-
ing of 5 cm between the measurement positions. The patch
array in Fig. 1�d� is the projection of every other of the 15
�15 reconstruction points �see Fig. 1�b�� onto the spherical
surface with a radius of rm=0.3 m, yielding 8�8 points cov-
ering an area slightly larger than the reconstruction surface.
The origin of the spherical wave expansion will be placed at
r= �0,0 ,0� m.

A. Scaling the wave functions

The influence of the scaling on the reconstruction accu-
racy is investigated using the simulated setup just mentioned.
However, only the sphere array in Fig. 1�c� will be consid-
ered in this section.

The SVD of the matrix, B, gives valuable insight into
the problem to be solved, and Fig. 2 shows the first and last
three left singular vectors with and without the scaling of the
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FIG. 1. �Color online� Simulated test case with �a� 4�4 monopoles located
on a patch of a virtual spherical surface with a radius of 0.2 m, �b� 15
�15 reconstruction points on a patch of a another spherical surface with a
radius of 0.25 m, �c� an array of 303 measurement positions located on
sphere with a radius of rm=0.3 m, and �d� an 8�8 array with all measure-
ment points located at rm=0.3 m.
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elementary wave functions, i.e., Fig. 2�a� is based on the
elementary waves, � j, in Eq. �2�, while Fig. 2�b� is based on

�̃ j from Eq. �3�. The singular vectors with high index i cor-
respond to the small singular values, and normally in NAH
these singular vectors mainly contain the high spatial fre-
quencies. This is clearly not the case in Fig. 2�a�; in fact, the
spatial frequency seems to decrease with i. In Fig. 2�b� the
waves are scaled on a sphere with radius, rs=0.25 m, and as
a result, the left singular vectors with low indices are the
least fluctuating ones. If the elementary waves are not scaled,
the amplitude of the radial part of the high order expansion
terms will be significantly higher than those of low order. For
the present setup the SVD decomposes B into basis vectors
that behave much like the elementary waves, and the high
amplitudes of the radial part will therefore be seen as large
singular values associated with the left singular values with
high spatial frequencies.

As a consequence of the opposite behavior of the singu-
lar vectors, the first basis vectors to be removed from the
solution when applying the TSVD in Eq. �7� are those with
the lowest spatial frequencies. This is undesirable since these
wave components are very important in the solution. Hence,
it is reasonable to expect that the TSVD �or Tikhonov� will
not benefit the solution at all for this setup.

The particle velocity created by the monopoles will now

be estimated in the normal direction of the reconstruction
surface, and Fig. 3 shows the relative errors as a function of
the truncation of the spherical wave expansion with and
without the wave scaling. The upper limit, J= �18+1�2=361,
is set so that the elementary waves can be sampled on equa-
tor and in the �-direction with approximately two measure-
ment positions per half-period. The regularization parameter
in the TSVD is chosen optimally, i.e., yielding the lowest
possible reconstruction error. Up to J=225 the optimal re-
sults are obtained when no regularization is introduced,
which is the reason why the curves coincide up to this trun-
cation number. Above this value the error does not change
much for the scaled version since the terms above J=225 are
effectively removed by the TSVD. For the unscaled waves,
however, the SVD cannot be truncated because the low order
components are important in the solution.

B. Open measurement surface

In practice it is often not possible to measure the sound
field on a surface that surrounds the source. The next simu-
lation uses the open measurement surface from Fig. 1�d� that
covers only a patch on the spherical surface from before.
This type of array will be denoted as a patch array. The
elementary waves are again scaled on the reconstruction sur-
face �rs=0.25 m�.

The left singular vectors for the patch array are shown in
Fig. 4. The vectors seem to be ordered in the traditional way
with the spatial frequencies increasing with i. It should be
kept in mind, though, that an elementary wave with high
order might not vary much across the small patch, which
means that high order elementary waves then behave as sin-
gular vectors with low index. As an example, the elementary
wave function, �100, from Eq. �3� only has approximately
one half-period across the patch in the �-direction and two
periods in the �-direction �not shown�. This means that some
elementary waves with relatively high order mainly consist
of combinations of singular vectors with relatively low in-
dex. The singular vectors with low index might even contrib-
ute significantly to both a high and a low order elementary
wave, respectively. The remains, which cannot be repre-
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FIG. 2. �Color online� Examples of real part of the left singular vectors, ui,
plotted on the spherical measurement surface with radius, rm=0.3 m. The
frequency is f =500 Hz, and the number of expansion terms is set to J
=100. �a� Without scaling the elementary wave functions; �b� With the el-
ementary waves scaled on a sphere with radius, rs=0.25 m.
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sented by the first singular vectors, will be seen as the noise-
like singular vectors in the bottom row in Fig. 4.

To analyze the inverse problem further, Eq. �6� is mul-
tiplied by vi

H yielding

vi
Ha =

1

	i
ui

Hp, i = 1,2, . . . ,I , �10�

where the orthogonality of the right singular vectors, vi, has
been used. The inner product, ui

Hp, describes the ith left
singular vector’s contribution to the measured pressure, and
the jth element in vi is multiplied on the amplitude of the jth
elementary wave, which means that the magnitude of the jth
element in vi is proportional to the participation factors of
the jth elementary wave. In the simple case where all the
coefficients are unity, the left-hand side becomes a sum of
the elements in vi

H, and the element with highest amplitude
participates the most to the inner product, ui

Hp. Figure 5
shows the modulus of the elements of the matrix, VH

= �v1 ,v2 , . . . ,vI�H, where I=rank�B�, when using the sphere
array and the patch array, respectively. For the sphere array
the high-magnitude elements are mainly located around the
diagonal, which means that the elementary waves with low j
�the first columns in VH� are closely related to the singular
vectors with low i �the first rows in VH� and vice versa.
Notice that the matrix is very well divided in clusters with
2n+1 rows and columns, where n is the order of the wave
functions belonging to the cluster. For the patch array the
concentration of high-magnitude elements is more blurred
and the matrix is not dominated around the diagonal. The
singular vectors with relatively low index, i, involve elemen-
tary waves with relatively high index, j, and already at i
�15 all the included terms have come into play. This is in
agreement with the arguments given in connection with Fig.
4 regarding the fact that a high order elementary wave does
not necessarily vary much across the patch.

Knowing that the singular values decrease when i is in-
creased, it can be concluded from Fig. 5 that for the sphere
array, the level of the singular values is directly related to the

order of the elementary waves. This is not the case for the
patch array, which is recognized by the fact that VH is not
dominated around its diagonal.

Figure 6 shows the singular values for both the patch
array and the sphere array. The plot shows that 	i drops
faster for the patch array, which can again be explained by
the fact that for the patch array the elementary waves’ varia-
tion across the array area consists of combinations of the
singular vectors with low index i, and those with high index
in Fig. 4 make up a small contribution to the elementary
waves, resulting in small singular values. That is, there exists
some level of linear dependence between the elementary
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FIG. 4. �Color online� Real values of the left singular vectors, ui, plotted on
the open measurement surface. The elementary waves are scaled on rs

=0.25 m; J=100 and f =500 Hz.

FIG. 5. �Color online� Modulus of the matrix elements in VH for f
=500 Hz and J=100, �a� with the sphere array, and �b� with the 8�8 array
covering only a part of the spherical measurement surface.

0 20 40 60 80 100

10
−10

10
−5

10
0

i

σ i

Patch array, 8x8
Patch array, 18x18
Sphere array
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the measurement sphere. The elementary waves are scaled on rs=0.25 m;
J=100 and f =500 Hz.
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waves seen across the small patch area and this linear depen-
dence translates into a faster decay of 	i. For the sphere
array the elementary waves behave very differently seen over
the closed measurement surface. In fact, the elementary
waves are even orthogonal when considering the entire
sphere, and therefore the wave functions are “more linearly
independent” than for the patch array, which results in a
slower decay of the singular values. Figure 6 also shows the
singular values corresponding to a patch array with 18�18
measurement positions, covering the same area as the 8�8
array. This array is included in the plot to show that the
conclusion also holds for a patch array with roughly the
same number of microphones as the sphere array. It should
be emphasized that the measurement surface need not be of
spherical shape to have a low condition number, i.e., a small
ratio between the largest and the smallest singular value. For
instance, spot checks with a box-shaped measurement sur-
face also resulted in matrix with a high concentration around
the diagonal as the one in Fig. 5 and small condition number
�not shown�.

C. Comparison of the regularization approaches

In this section, the SOSWE results are compared with
and without the use of the TSVD, respectively. The test case
from Fig. 1 is used again, and the resulting reconstruction
errors are shown in Fig. 7 for the 8�8 patch array and for
the sphere array. From Fig. 7�a� it is seen that up to J=225
the TSVD is unnecessary when using the sphere array. The
condition number increases with J due to the strong decay of
the elementary waves with highest order, and at J
225 the
condition number becomes so large that the error of the un-
regularized solution starts to increase. Hence, for this array
configuration the TSVD can be omitted if the truncation
number, J, is chosen optimally. However, this requires an
automated method for the selection of J, and a wrong selec-
tion will result in large errors. When introducing the TSVD,
the error does not increase much at high values of J because
the part of the solution stemming from the small singular
values is removed. Therefore, when the TSVD is used, the
method is not very sensitive to the choice of J, as long as it
is chosen large enough.

As mentioned, the TSVD is superfluous at low values of
J for the sphere array, but as seen in Fig. 7�b�, this is not the
case for the patch array. The noise in p will in general have
components as those in the bottom row of Fig. 4 and the
associated small singular values result in an unwanted am-
plification of these components during the reconstruction.
Therefore, the additional regularization is required for most
of the values of J in Fig. 7�b�. These plots clearly show that
there is a risk of getting high errors if additional regulariza-
tion is not implemented in the SOSWE; at least if the mea-
surement surface covers only a patch on an otherwise closed
surface.

D. Nonspherical source shape

Very often in applied acoustics the vibrator of interest
has a nonspherical shape. The theory behind SOSWE dic-
tates that the source must be of spherical geometry in order

to reconstruct the sound field on its surface, but as men-
tioned, earlier results have shown reasonable accuracy for
the method when applied on nonspherical source shapes as
well. This section investigates the reconstruction errors using
a planar vibrator.

The simulated source object is a 0.08�0.36�0.21 m3

rectangular box with five rigid sides and the sixth side being
a 0.36�0.21 m2 simply supported steel plate. The plate is
point excited near a corner, and the radiated sound field is
calculated using the boundary element method. The sound
pressure is computed at 8�8 field positions situated 3 cm
from the plate �see Fig. 8�. Microphone mismatch is again
added to the sound pressure, and the result is used as input to
SOSWE to find a set of expansion coefficients. Finally, the
particle velocity is estimated at 15�15 points on the plate
directly under the array. The waves are scaled on a sphere
with a radius equal to the average distance between the ex-
pansion origin and the reconstruction points.

Two thicknesses have been used for the plate, 5 and
1.5 mm. In general, the dominating modes in the steel plate
at a given excitation frequency will have a shorter spatial
wavelength for the thin plate. This means that the radiated
sound field is more evanescent for the 1.5 mm plate than for
the 5 mm plate. The resulting reconstruction errors are
shown in Fig. 9 for the 5 mm plate at two different frequen-
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FIG. 7. �Color online� Error in the velocity as a function of the number of
elementary waves included with �a� patch array, and �b� sphere array. The
dashed lines are based on Eq. �5�, i.e., without the TSVD as additional
regularization, and the solid lines are based the TSVD solution in Eq. �7�
with GCV as parameter choice method. The waves are scaled at rs

=0.25 m.
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cies. Each curve on the plots corresponds to a new distance
between the expansion origin and the measurement plane, a.
The results show that there is an interrelation between the
optimal number of elementary waves and the distance to the
expansion origin, and the optimal combination of a and J
clearly depends on the frequency. In general, the further
away the origin is, the higher is the optimal number of func-
tions. This can be explained by the fact that the elementary
waves propagate for ka
n, which means that the order, n,
must be high to represent the evanescent behavior of the field
when a is large.

From Fig. 9 it seems that good results can be achieved if

J is set high and if the origin is adjusted accordingly. Figure
10 shows the error as a function of frequency for the two
plates using different positions of the expansion origin with a
fixed number of terms, J=676. No single value for a benefits
the whole frequency range. For the low frequencies the best
results are obtained with the origin far from the plate, and for
the high frequencies the preferred origin is closer to the
plate. For the furthest origins, e.g., a=0.6 m, better results
are achieved if a higher value of J is used �not shown�, but
the choice for J is a compromise between computational cost
and the �assumed� reconstruction accuracy.

The errors are also shown for ESM in Fig. 10 for bench-
marking. The equivalent sources �monopoles� are positioned
below the plate at a distance equal to the spacing of the
reconstruction points �1.5 cm�. There is one monopole below
each reconstruction point, and then two additional rims of
monopoles at the edges, i.e., 19�19 in total with a 1.5 cm
spacing. ESM is clearly more robust and accurate than
SOSWE, and the position of the monopoles does not have to
be varied with the frequency in order to get satisfactory re-
sults.

IV. EXPERIMENTAL RESULTS

Some experiments have been carried out in the anechoic
room at the University of Southern Denmark. The source
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FIG. 8. �Color online� Imaginary part �the real part i zero� of the normal
velocity in m/s of a simply supported steel plate �in a rigid rectangular box�.
The circles indicate 8�8 microphone positions placed 3 cm from the plate.
The displayed vibration pattern is for a 5 mm plate point excited at 500 Hz.
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FIG. 9. �Color online� Relative error in the reconstucted particle velocity on
the vibrating 5 mm steel plate for different distances, a, to the expansion
origin. GCV is used to find a regularization parameter for the TSVD.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

R
ec

on
st

ru
ct

io
n

er
ro

r
[%

]

5 mm steel plate

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

Frequency [Hz]

R
ec

on
st

ru
ct

io
n

er
ro

r
[%

]

1.5 mm steel plate

a=0.25 m
a=0.30 m
a=0.40 m
a=0.55 m
a=0.60 m
ESM

(a)

(b)

FIG. 10. �Color online� Reconstruction error as a function of frequency; �a�
5 mm steel plate, and �b� 1.5 mm steel plate. Each curve corresponds to a
new distance to the expansion origin, a; J=676; GCV is used with the
TSVD. The ESM results are also shown for the sake of benchmarking.
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object is a 0.4�0.4�0.5 m3 rectangular box of 19 mm fi-
berboard with one side replaced by a 3 mm steel plate.

The steel plate was excited at a point near its center with
broad band noise using a Brüel & Kjær �B&K� exciter �type
4809�. A stinger was mounted on the exciter, and a force
transducer connected the stinger to the plate �using beeswax
on the transducer�. The pressure was measured with a B&K
two-layer microphone array with 8�8 1 /4 in. microphones
�type 4959� in each layer. The microphones constitute a regu-
lar grid with 3 cm spacing, and only the front layer of mi-
crophones was used. The array was positioned symmetrically
with respect to the steel plate at a standoff distance of 3 cm.
A B&K “PULSE” analyzer with 65 channels was used in all
measurements.

The normal velocity of the steel plate was measured
with a laser vibrometer �Ometron VH-1000-D� in 16�14
points covering the entire plate with a spacing of 3 cm be-
tween the points. The force transducer was used as a refer-
ence for both pressure and velocity measurements, and to
circumvent problems such as drift in the setup, only transfer
functions �between force transducer and laser/microphone�
were used. Hence all values in the following are given in
�m/s�/N instead of m/s.

The results from the laser are considered as the true
velocity, and Eq. �9� is used as an error measure taking into
account only the 8�8 points in front of the array. Since the
difference in phase response between the laser and the mi-
crophones is unknown, only absolute values are used in the
error calculation.

In the results that follow, the truncation of the wave
expansion is set to J=676, and GCV is used as parameter
choice method in the TSVD. The reconstruction errors using
SOSWE with different origins are displayed in Fig. 11. As
for the simulated steel plate in Sec. III D, the optimal posi-
tion of the origin is further away from the plate at the low
frequencies and closer to the plate for the higher frequencies.
The ESM errors are also shown in the plot, and again, this
method is as good, or better, than SOSWE. The equivalent
sources in ESM are distributed in the same way as in the
simulations.

The optimal location of the origin in SOSWE depends
strongly on the number of terms included, the frequency, and

on the source object. In Ref. 6 an optimization procedure is
suggested to find an estimate to the optimal value for J with
a fixed expansion origin. In the following, a similar proce-
dure will be applied, but with J being fixed and the expan-
sion origin being the optimization parameter. The measure-
ment points are divided into two groups �M1 and M2�, and
then the pressure data from M1 are used as input to the
SOSWE algorithm to estimate the pressure in M2. This is
repeated for different origins, and the origin that yields the
lowest error in M2 is assumed to be the optimal choice. It
should be emphasized, though, that the lowest error in M2

does not necessarily correspond to the lowest error on the
source surface. Every other measurement position is used for
M1, and the reconstruction error at the remaining points, M2,
is found for a= �0.25,0.3, . . . ,0.7� m. That is, there are 32
measurement positions in each group, and no neighboring
positions belong to the same group. The resulting reconstruc-
tion results are shown in Fig. 12 together with the laser re-
sults and the ESM-based reconstruction. The plots show the
reconstruction results on the entire steel plate �the error cal-
culations in Fig. 11 are based only on the area below the
array�. The origins used in SOSWE are selected by the opti-
mization procedure, and the erroneous reconstruction pattern
at f =500 Hz and f =3 kHz is due to an inappropriate choice
of the origin. That is, the origin that yields the lowest error in
M2 does not correspond to a well reconstructed pattern on
the source surface. ESM predicts the velocity pattern quite
well in the region below the array and, in fact, also in the
region just outside the measurement area. In general, how-
ever, the ESM prediction should only be trusted in the area
covered by the array.

V. CONCLUSION

The SOSWE approach is sometimes used for NAH pur-
poses, and the truncation of the wave expansion is often used
as the only regularization method in order to prevent the
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FIG. 11. �Color online� Experiment with a vibrating steel plate. Error in
reconstructed velocity using SOSWE with different expansion origins and
ESM.

FIG. 12. �Color online� Measured �first column� and estimated �second and
third column� normal velocity in �m/s�/N on the steel plate. The black
squares indicate the position of the array. The origins in SOSWE are found
from the optimization procedure: a=0.4 m at 500 Hz, a=0.5 m at 1.7 kHz,
and a=0.3 m at 3 kHz.
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unwanted amplifications of noise during the reconstruction
process. The results in the present paper showed that when
the measurement points do not constitute a closed surface
surrounding the expansion origin, but only a small patch, the
truncation of the wave expansion is in general not sufficient
to get accurate results since the condition number can be
high even for a relatively low number of expansion terms
when using the open array. Therefore, additional regulariza-
tion such as the TSVD or Tikhonov regularization should be
applied in connection with SOSWE methods when using
open measurement surfaces. The TSVD can be omitted when
using a spherical array surrounding the source, but since the
truncation of the expansion then works as the only regular-
ization, the number of terms should be selected carefully.

It has been shown that in order for the additional regu-
larization to work properly the spherical wave functions
should be scaled in such a way that the waves with highest
order have the lowest amplitude on the measurement surface.
This can be done by scaling the functions on the surface of
the source. By doing that, the regularization will mainly re-
move information from the high order terms, leaving the
information from the low order terms in the regularized so-
lution.

Acceptable accuracy can be achieved with the method
on sources of nonspherical geometry, but the errors depend
strongly on the choice of the expansion origin and the num-
ber of terms included. However, as shown with simulations
and practical measurements, if one of these parameters is
fixed the other most be changed with the frequency to get
useful results. The optimal value of this parameter is un-
known in practice, which leaves a risk of high reconstruction

errors. This is a main drawback of the method, and as shown
in this paper the ESM, which uses distributed monopoles to
represent the sound field, is a more robust and accurate
method.
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