306 research outputs found

    X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x

    Full text link
    Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS). The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3 and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were identified and they do not change with etching time. The Binding Energy of the Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a positive chemical shift in the core levels. On the other hand, analysis of Valence Band spectra showed that the contribution of the Nb 4d states slightly decreased while the contribution of the B 2p(pi) states increased as the boron content increased. As a consequence, the electronic and superconducting properties were substantially modified, in good agreement with band-structure calculations.Comment: 10 pages, 7 figures, 1 tabl

    Unusual features in the nonlinear microwave surface impedance of Y-Ba-Cu-O thin films

    Full text link
    Striking features have been found in the nonlinear microwave (8 GHz) surface impedance Zs=Rs+jXsZ_s=R_s + jX_s of high-quality YBaCuO thin films with comparable low power characteristics [Rres3560μΩR_{res}\sim 35--60 \mu\Omega and λL(15K)130260nm\lambda_L(15 K)\sim 130--260 nm]. The surface resistance RsR_s is found to increase, decrease, or remain independent of the microwave field HrfH_{rf} (up to 60 mT) at different temperatures and for different samples. However, the surface reactance XsX_s always follows the same functional form. Mechanisms which may be responsible for the observed variations in RsR_s and XsX_s are briefly discussed.Comment: 4 pages, 4 figure

    Evaluating an Alleged Mimic of the Monarch Butterfly: \u3ci\u3eNeophasia\u3c/i\u3e (Lepidoptera: Pieridae) Butterflies are Palatable to Avian Predators

    Get PDF
    Some taxa have adopted the strategy of mimicry to protect themselves from predation. Butterflies are some of the best representatives used to study mimicry, with the monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae) a well-known model. We are the first to empirically investigate a proposed mimic of the monarch butterfly: Neophasia terlooii, the Mexican pine white butterfly (Lepidoptera: Pieridae). We used captive birds to assess the palatability of N. terlooii and its sister species, N. menapia, to determine the mimicry category that would best fit this system. The birds readily consumed both species of Neophasia and a palatable control species but refused to eat unpalatable butterflies such as D. plexippus and Heliconius charithonia (Lepidoptera: Nymphalidae). Given some evidence for mild unpalatability of Neophasia, we discuss the results considering modifications to classic mimicry theory, i.e., a palatability-based continuum between Batesian and Müllerian mimicry, with a quasi-Batesian intermediate. Understanding the ecology of Neophasia in light of contemporary and historical sympatry with D. plexippus could shed light on the biogeography of, evolution of, and predation pressure on the monarch butterfly, whose migration event has become a conservation priority

    Search for Magnetic Field Induced Gap in a High-Tc Superconductor

    Full text link
    Break junctions made of the optimally doped high temperature superconductor Bi2Sr2Ca2CuO8 with Tc of 90 K has been investigated in magnetic fields up to 12 T, at temperatures from 4.2 K to Tc. The junction resistance varied between 1kOhm and 300kOhm. The differential conductance at low biases did not exhibit a significant magnetic field dependence, indicating that a magnetic-field-induced gap (Krishana et al., Science 277 83 (1997)), if exists, must be smaller than 0.25 meV.Comment: 3 pages, 2 figure

    Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes

    Full text link
    we identify the intrinsic bulk pairing symmetry for both electron and hole-doped cuprates from the existing bulk- and nearly bulk-sensitive experimental results such as magnetic penetration depth, Raman scattering, single-particle tunneling, Andreev reflection, nonlinear Meissner effect, neutron scattering, thermal conductivity, specific heat, and angle-resolved photoemission spectroscopy. These experiments consistently show that the dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave with eight line nodes, and of anisotropic s-wave in electron-doped cuprates. The proposed pairing symmetries do not contradict some surface- and phase-sensitive experiments which show a predominant d-wave pairing symmetry at the degraded surfaces. We also quantitatively explain the phase-sensitive experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure

    Infrared Conductivity in Layered dd-wave Superconductors

    Full text link
    We calculate the infrared conductivity of a stack of coupled, two-dimensional superconducting planes within the Fermi liquid theory of superconductivity. We include the effects of random scattering processes and show that the presence of even a small concentration of resonant impurities, in a dd-wave superconductor, has an important effect on both the in-plane and cc-axis transport properties, which could serve as signatures for dd-wave pairing.Comment: 18 pages in a RevTex (3.0) file plus 5 postscript figures (uuencoded). Replaced with minor changes as it will appear in the Physical Review B {\bf 52} issue 1 Oct. 199

    Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films

    Full text link
    Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern it is found that there exists a universal dependency of the grain boundary current on the local flux density. A change in the local flux density means a variation in the flux line-flux line distance. With this knowledge a model is developped that explains the flux-current relation by means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure
    corecore