276 research outputs found
Generalized Canonical Regression
This paper introduces a generalized approach to canonical regression, in which a set of jointly dependent variables enters the left-hand side of the equation as a linear combination, formally like the linear combination of regressors in the right-hand side of the equation. Natural applications occur when the dependent variable is the sum of components that may optimally receive unequal weights or in time series models in which the appropriate timing of the dependent variable is not known a priori. The paper derives a quasi-maximum likelihood estimator as well as its asymptotic distribution and provides illustrative applications
Trans Fat Consumption and Aggression
Background: Dietary trans fatty acids (dTFA) are primarily synthetic compounds that have been introduced only recently; little is known about their behavioral effects. dTFA inhibit production of omega-3 fatty acids, which experimentally have been shown to reduce aggression. Potential behavioral effects of dTFA merit investigation. We sought to determine whether dTFA are associated with aggression/irritability. Methodolgy/Prinicpal Findings: We capitalized on baseline dietary and behavioral assessments in an existing clinical trial to analyze the relationship of dTFA to aggression. Of 1,018 broadly sampled baseline subjects, the 945 adult men and women who brought a completed dietary survey to their baseline visit are the target of this analysis. Subjects (seen 1999– 2004) were not on lipid medications, and were without LDL-cholesterol extremes, diabetes, HIV, cancer or heart disease. Outcomes assessed adverse behaviors with impact on others: Overt Aggression Scale Modified-aggression subscale (primary behavioral endpoint); Life History of Aggression; Conflict Tactics Scale; and self-rated impatience and irritability. The association of dTFA to aggression was analyzed via regression and ordinal logit, unadjusted and adjusted for potential confounders (sex, age, education, alcohol, and smoking). Additional analyses stratified on sex, age, and ethnicity, and examined the prospective association. Greater dTFA were strongly significantly associated with greater aggression, with dTFA more consistently predictive than other assessed aggression predictors. The relationship was upheld wit
Successful Expansion but Not Complete Restriction of Tropism of Adeno-Associated Virus by In Vivo Biopanning of Random Virus Display Peptide Libraries
Targeting viral vectors to certain tissues in vivo has been a major challenge in gene therapy. Cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids in vitro but so far this system could not easily be translated to in vivo applications. Using a novel, PCR-based amplification protocol for peptide libraries displayed on adeno-associated virus (AAV), we selected vectors for optimized transduction of primary tumor cells in vitro. However, these vectors were not suitable for transduction of the same target cells under in vivo conditions. We therefore performed selections of AAV peptide libraries in vivo in living animals after intravenous administration using tumor and lung tissue as prototype targets. Analysis of peptide sequences of AAV clones after several rounds of selection yielded distinct sequence motifs for both tissues. The selected clones indeed conferred gene expression in the target tissue while gene expression was undetectable in animals injected with control vectors. However, all of the vectors selected for tumor transduction also transduced heart tissue and the vectors selected for lung transduction also transduced a number of other tissues, particularly and invariably the heart. This suggests that modification of the heparin binding motif by target-binding peptide insertion is necessary but not sufficient to achieve tissue-specific transgene expression. While the approach presented here does not yield vectors whose expression is confined to one target tissue, it is a useful tool for in vivo tissue transduction when expression in tissues other than the primary target is uncritical
Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer
Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties
Inference for Impulse Responses
Poor identification of individual impulse response coefficients does not necessarily mean that an impulse response is imprecisely estimated. This paper introduces a three-pronged approach on how to communicate uncertainty of impulse response estimates: (1) withWald tests of joint significance; (2) with conditional t-tests of individual marginal coefficient significance; and (3) with fan charts based on the percentiles of the joint Wald statistics. The paper also shows how to anchor the impulse response analysis with a priori economic restrictions that can be formally tested and used to tighten structural identification. These methods are universal and do not depend on how the impulse responses are estimated. An empirical application illustrates the techniques in practice
- …