545 research outputs found

    The economic value of wild resources to the Indigenous community of the Wallis Lakes Catchment

    No full text
    There is currently a growing policy interest in the effects of the regulatory environment on the ability of Indigenous people to undertake customary harvesting of wild resources. This Discussion Paper develops and describes a methodology that can be used to estimate the economic benefi ts derived from the use of wild resources. The methodology and the survey instrument that was developed were pilot tested with the Indigenous community of the Wallis Lake catchment. The harvesting of wild resources for consumption makes an important contribution to the livelihoods of Indigenous people living in this area

    Non-Commutativity of the Zero Chemical Potential Limit and the Thermodynamic Limit in Finite Density Systems

    Full text link
    Monte Carlo simulations of finite density systems are often plagued by the complex action problem. We point out that there exists certain non-commutativity in the zero chemical potential limit and the thermodynamic limit when one tries to study such systems by reweighting techniques. This is demonstrated by explicit calculations in a Random Matrix Theory, which is thought to be a simple qualitative model for finite density QCD. The factorization method allows us to understand how the non-commutativity, which appears at the intermediate steps, cancels in the end results for physical observables.Comment: 7 pages, 9 figure

    Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid

    Get PDF
    The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6

    Non-Hermitian Random Matrix Theory and Lattice QCD with Chemical Potential

    Get PDF
    In quantum chromodynamics (QCD) at nonzero chemical potential, the eigenvalues of the Dirac operator are scattered in the complex plane. Can the fluctuation properties of the Dirac spectrum be described by universal predictions of non-Hermitian random matrix theory? We introduce an unfolding procedure for complex eigenvalues and apply it to data from lattice QCD at finite chemical potential μ\mu to construct the nearest-neighbor spacing distribution of adjacent eigenvalues in the complex plane. For intermediate values of μ\mu, we find agreement with predictions of the Ginibre ensemble of random matrix theory, both in the confinement and in the deconfinement phase.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    The Fractal Geometry of Critical Systems

    Get PDF
    We investigate the geometry of a critical system undergoing a second order thermal phase transition. Using a local description for the dynamics characterizing the system at the critical point T=Tc, we reveal the formation of clusters with fractal geometry, where the term cluster is used to describe regions with a nonvanishing value of the order parameter. We show that, treating the cluster as an open subsystem of the entire system, new instanton-like configurations dominate the statistical mechanics of the cluster. We study the dependence of the resulting fractal dimension on the embedding dimension and the scaling properties (isothermal critical exponent) of the system. Taking into account the finite size effects we are able to calculate the size of the critical cluster in terms of the total size of the system, the critical temperature and the effective coupling of the long wavelength interaction at the critical point. We also show that the size of the cluster has to be identified with the correlation length at criticality. Finally, within the framework of the mean field approximation, we extend our local considerations to obtain a global description of the system.Comment: 1 LaTeX file, 4 figures in ps-files. Accepted for publication in Physical Review

    On the predictability of supramolecular interactions in molecular cocrystals-the view from the bench

    Get PDF
    A series of cocrystals involving theophylline and fluorobenzoic acids highlights the difficulty of predicting supramolecular interactions in molecular crystals.MKC and DKB gratefully acknowledge financial support from the UCL Faculty of Mathematical and Physical Sciences. DKB and WJ thank the Royal Society for a Newton International Fellowship and the Isaac Newton Trust (Trinity College, University of Cambridge) for funding. MA thanks the EPSRC for a studentship, while SAS acknowledges funding through the EPSRC CASE scheme with Pfizer. We are grateful for computational support from the UK national high performance computing service, ARCHER, for which access was obtained via the UKCP consortium and funded by EPSRC grant (EP/K013564/1).This is the final version of the article. It first appeared from the Royal Society of Chemistry via https://doi.org//10.1039/C6CE00293

    Statistical analysis and the equivalent of a Thouless energy in lattice QCD Dirac spectra

    Get PDF
    Random Matrix Theory (RMT) is a powerful statistical tool to model spectral fluctuations. This approach has also found fruitful application in Quantum Chromodynamics (QCD). Importantly, RMT provides very efficient means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator for staggered fermions from SU(2) lattice gauge theory for different lattice size and gauge couplings. In disordered systems, the Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is discussed. Moreover, we work out higher order correlators as well, in particular three--point correlation functions.Comment: 24 pages, 24 figures, all included except one figure, missing eps file available at http://pluto.mpi-hd.mpg.de/~wilke/diff3.eps.gz, revised version, to appear in PRD, minor modifications and corrected typos, Fig.4 revise

    Hatano-Nelson model with a periodic potential

    Full text link
    We study a generalisation of the Hatano-Nelson Hamiltonian in which a periodic modulation of the site energies is present in addition to the usual random distribution. The system can then become localized by disorder or develop a band gap, and the eigenspectrum shows a wide variety of topologies. We determine the phase diagram, and perform a finite size scaling analysis of the localization transition.Comment: 7 pages, 10 figure

    Complex Langevin simulations of a finite density matrix model for QCD

    Get PDF
    We study a random matrix model for QCD at finite density via complex Langevin dynamics. This model has a phase transition to a phase with nonzero baryon density. We study the convergence of the algorithm as a function of the quark mass and the chemical potential and focus on two main observables: the baryon density and the chiral condensate. For simulations close to the chiral limit, the algorithm has wrong convergence properties when the quark mass is in the spectral domain of the Dirac operator. A possible solution of this problem is discussed.Comment: 10 pages, 9 figures; Contribution to the "12th Quark Confinement and the Hadron Spectrum" conference, Thessaloniki, 28.08.-04.09.201

    Chiral Phase Transition within Effective Models with Constituent Quarks

    Get PDF
    We investigate the chiral phase transition at nonzero temperature TT and baryon-chemical potential μB\mu_B within the framework of the linear sigma model and the Nambu-Jona-Lasinio model. For small bare quark masses we find in both models a smooth crossover transition for nonzero TT and μB=0\mu_B=0 and a first order transition for T=0 and nonzero μB\mu_B. We calculate explicitly the first order phase transition line and spinodal lines in the (T,μB)(T,\mu_B) plane. As expected they all end in a critical point. We find that, in the linear sigma model, the sigma mass goes to zero at the critical point. This is in contrast to the NJL model, where the sigma mass, as defined in the random phase approximation, does not vanish. We also compute the adiabatic lines in the (T,μB)(T,\mu_B) plane. Within the models studied here, the critical point does not serve as a ``focusing'' point in the adiabatic expansion.Comment: 22 pages, 18 figure
    corecore