26 research outputs found

    Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2

    Get PDF
    Isocitrate dehydrogenase (IDH) genes 1 and 2 are frequently mutated in acute myeloid leukaemia (AML), low-grade glioma, cholangiocarcinoma (CC) and chondrosarcoma (CS). For AML, low-grade glioma and CC, mutant IDH status is associated with a DNA hypermethylation phenotype, implicating altered epigenome dynamics in the aetiology of these cancers. Here we show that the IDH variants in CS are also associated with a hypermethylation phenotype and display increased production of the oncometabolite 2-hydroxyglutarate, supporting the role of mutant IDH-produced 2-hydroxyglutarate as an inhibitor of TET-mediated DNA demethylation. Meta-analysis of the acute myeloid leukaemia, low-grade glioma, cholangiocarcinoma and CS methylation data identifies cancer-specific effectors within the retinoic acid receptor activation pathway among the hypermethylated targets. By analysing sequence motifs surrounding hypermethylated sites across the four cancer types, and using chromatin immunoprecipitation and western blotting, we identify the transcription factor EBF1 (early B-cell factor 1) as an interaction partner for TET2, suggesting a sequence-specific mechanism for regulating DNA methylation

    Genome-wide association study identifies two susceptibility loci for osteosarcoma

    Get PDF
    Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10⁻⁹) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10⁻⁸ and 2.9 × 10⁻⁷, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma

    An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma

    No full text
    Chordoma is a rare malignant tumour of bone, the molecular marker of which is the expression of the transcription factor, brachyury. Having recently demonstrated that silencing brachyury induces growth arrest in a chordoma cell line, we now seek to identify its downstream target genes. Here we use an integrated functional genomics approach involving shRNA-mediated brachyury knockdown, gene expression microarray, ChIP-seq experiments, and bioinformatics analysis to achieve this goal. We confirm that the T-box binding motif of human brachyury is identical to that found in mouse, Xenopus, and zebrafish development, and that brachyury acts primarily as an activator of transcription. Using human chordoma samples for validation purposes, we show that brachyury binds 99 direct targets and indirectly influences the expression of 64 other genes, thereby acting as a master regulator of an elaborate oncogenic transcriptional network encompassing diverse signalling pathways including components of the cell cycle, and extracellular matrix components. Given the wide repertoire of its active binding and the relative specific localization of brachyury to the tumour cells, we propose that an RNA interference-based gene therapy approach is a plausible therapeutic avenue worthy of investigation

    Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study

    No full text
    A variety of analyses, including fluorescence in situ hybridization (FISH), quantitative PCR (qPCR) and array CGH (aCGH), have been performed on a series of chordomas from 181 patients. Twelve of 181 (7%) tumours displayed amplification of the T locus and an additional two cases showed focal amplification; 70/181 (39%) tumours were polysomic for chromosome 6, and 8/181 (4.5%) primary tumours showed a minor allelic gain of T as assessed by FISH. No germline alteration of the T locus was identified in non-neoplastic tissue from 40 patients. Copy number gain of T was seen in a similar percentage of sacrococcygeal, mobile spine and base of skull tumours. Knockdown of T in the cell line, U-CH1, which showed polysomy of chromosome 6 involving 6q27, resulted in a marked decrease in cell proliferation and morphological features consistent with a senescence-like phenotype. The U-CH1 cell line was validated as representing chordoma by the generation of xenografts, which showed typical chordoma morphology and immunohistochemistry in the NOD/SCID/interleukin 2 receptor [IL2r]gamma(null) mouse model. In conclusion, chromosomal aberrations resulting in gain of the T locus are common in sporadic chordomas and expression of this gene is critical for proliferation of chordoma cells in vitro. Copyright (C) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
    corecore