6 research outputs found

    Deciphering the introduction and transmission of SARS-CoV-2 in the Colombian Amazon Basin

    Get PDF
    La pandemia del SARS-CoV-2 ha obligado a las autoridades sanitarias de todo el mundo a tomar importantes decisiones para reducir su propagación. La epidemiología genómica se ha convertido en una herramienta valiosa para comprender las introducciones y la propagación del virus en una ubicación geográfica específica.The SARS-CoV-2 pandemic has forced health authorities across the world to take important decisions to curtail its spread. Genomic epidemiology has emerged as a valuable tool to understand introductions and spread of the virus in a specific geographic location

    Deciphering the introduction and transmission of SARS-CoV-2 in the Colombian Amazon Basin.

    No full text
    BackgroundThe SARS-CoV-2 pandemic has forced health authorities across the world to take important decisions to curtail its spread. Genomic epidemiology has emerged as a valuable tool to understand introductions and spread of the virus in a specific geographic location.Methodology/principal findingsHere, we report the sequences of 59 SARS-CoV-2 samples from inhabitants of the Colombian Amazonas department. The viral genomes were distributed in two robust clusters within the distinct GISAID clades GH and G. Spatial-temporal analyses revealed two independent introductions of SARS-CoV-2 in the region, one around April 1, 2020 associated with a local transmission, and one around April 2, 2020 associated with other South American genomes (Uruguay and Brazil). We also identified ten lineages circulating in the Amazonas department including the P.1 variant of concern (VOC).Conclusions/significanceThis study represents the first genomic epidemiology investigation of SARS-CoV-2 in one of the territories with the highest report of indigenous communities of the country. Such findings are essential to decipher viral transmission, inform on global spread and to direct implementation of infection prevention and control measures for these vulnerable populations, especially, due to the recent circulation of one of the variants of concern (P.1) associated with major transmissibility and possible reinfections

    Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants

    No full text
    Abstract Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been reported in immune-compromised individuals and people undergoing immune-modulatory treatments. Although intrahost evolution has been documented, direct evidence of subsequent transmission and continued stepwise adaptation is lacking. Here we describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of a new Omicron sublineage, BA.1.23, over an eight-month period. The initially transmitted BA.1.23 variant encoded seven additional amino acid substitutions within the spike protein (E96D, R346T, L455W, K458M, A484V, H681R, A688V), and displayed substantial resistance to neutralization by sera from boosted and/or Omicron BA.1-infected study participants. Subsequent continued BA.1.23 replication resulted in additional substitutions in the spike protein (S254F, N448S, F456L, M458K, F981L, S982L) as well as in five other virus proteins. Our findings demonstrate not only that the Omicron BA.1 lineage can diverge further from its already exceptionally mutated genome but also that patients with persistent infections can transmit these viral variants. Thus, there is, an urgent need to implement strategies to prevent prolonged SARS-CoV-2 replication and to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients

    Molecular evidence of SARS-CoV-2 in New York before the first pandemic wave

    No full text
    Matthew M. Hernandez and Ana S. Gonzalez-Reiche and colleagues report evidence of SARSCoV-2 infections in respiratory pathogen-negative nasopharyngeal specimens collected in New York, which date back to over one month before the first officially documented case in the state. The findings provide insights in to the origins of the virus in New York

    Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission.

    No full text
    SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission
    corecore